En el artíclo [Gingold & Monaghan, 1977] se introducen

La función kernel, W(\vec{r}-\vec{r'},h), es una función que permite interpolar los valores de cualquier propiedad del fluido en función del valor de las partículas del entorno. Su papel es similar al de los diferentes esquemas de diferencias en el ámbito de las Diferencias Finitas o las funciones de forma en los Elementos Finitos.

Existen diferentes funciones kernel: Gaussiana, cuadrática, spline cúbico, quíntica, etc.

La función kernel debe cumplir:

  1. Positiva: W(r-r',h) \geq 0 dentro del dominio.
  2. Soporte compacto: W(r-r',h) = 0 fuera del dominio.
  3. Normalizada: \int W(r-r',h) dr' = 1.
  4. Comportamiento de función delta: \lim_{h \rightarrow 0} W(r-r',h) dr' = \delta(r-r').
  5. Monotona decreciente.

Para derivar, tomamos la derivada analítica de la suma aproximada. De esta manera, como la derivada de la función kernel es conocida, no necesitamos diferencias finitas y el conjunto de ecuaciones PDE pasa a ser ODE.

\nabla f(\vec{r}) = \sum_b \frac{m_b}{\rho_b} f_b W(\vec{r}-\vec{r'},h)

Anuncios