La hipótesis de Rieman dice que todos los ceros no triviales de la función zeta de Riemann:

\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}

tienen parte real \frac{1}{2}.

En el entretenido libro “La música de los números primos” de Marcus de Sautoy, éste comenta la posibilidad de que la teoría de números y la física estén mas estrechamente relacionadas de lo que pensamos:

Los físicos creen que la razón por la que los ceros de Riemann deben situarse todos sobre la recta es que terminarán por ser las frecuencias de un tambor matemático. A un cero que se situara fuera de la recta le correspondería una frecuencia imaginaria prohibida por la teoría.

Y para afianzar esta idea, comenta un problema clásico de hidrodinámica resuelto por Bernhard Riemann argumentando de la misma manera:

El problema se refiere a una esfera de fluido en rotación que se mantiene unida gracias a interacciones gravitacionales recíprocas entre las partículas que la componen. Una estrella, por ejemplo, es una enorme bola de gas giratorio que se mantiene unido por su propia gravedad. La cuestión es: ¿qué sucederá con la bola si se le da una patada?¿Se limitará a temblar ligeramente o se desitegrará? Para responder a estas preguntas es necesario determinar si ciertos números imaginarios determinados están o no alineados. Si lo están, la esfera de fluido en rotación quedará intacta.

Los Nachlass son un conjunto de notas inéditas de Riemann que están en la biblioteca de Gotinga. Cuenta el libro que cuando el físico Jon Keating pidió dos partes de los Nachlass, una correspondiente a sus intentos de demostración de la hipotesis de Riemann y otra a sus estudios en hidrodinámica, el bibliotecario le entrego un único grupo de documentos. De ahí que Marcus escriba:

Una vez más, los Nachlass revelaban hasta qué punto Riemann se adelantó a su tiempo. Es imposible que no fuera consciente del significado que implicaba su solución al problema de dinámica de fluidos. Su método había demostrado por qué cietos números imaginarios que aparecían en su análisis de la esfera de fluido se colocaban en línea recta; y al mismo tiempo -y en los mismos folios- estaba intentando demostrar por qué los ceros de su paisaje zeta se situaban todos sobre la misma línea.

 

Anuncios