Hablemos de generalizaciones, cosa esencial en matemáticas:

  • Desde el punto de vista del análisis funcional, ¿qué pasa si nuestro espacio tiene asociada una métrica no definida positiva?
  • En el caso finito, ¿qué pasa cuando en lugar de trabajar con \mathbb{R}^n o \mathbb{C}^n tengo variedades diferenciables mas generales?
  • En analisis funcional tengo espacios de funciones donde estas cumplen una propiedad asociada con una medida y especificada normalmente mediante una integral. ¿Puedo tener espacios de variedades cumpliendo propiedades de este tipo? (pues tiene sentido hablar de integración en variedades orientadas)
  • Al hablar de variedades de Riemann, asociamos una métrica a una variedad para poder hablar de distancias, areas, angulos, etc. En realidad, asociamos un producto escalar, un tensor 2 veces covariante, del que deriva una norma a partir de la que podemos especificar una distancia.
Anuncios