Aquí está el artículo donde aparece el nuevo esquema en el que el sistema se desacopla de manera jerárquica:

(1) Conocidas las cantidades hidrodinámicas conservadas, resolver:

\Delta X^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_j X^j = 8 \pi f^{ij} S_j^*

para encontrar

\hat{A}^{ij} \approx (LX)^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}.

(2) Resolver la ecuación:

\Delta \psi = -2 \pi \psi^{-1} E^{*} - \psi^{-7} \frac{ f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij} }{8}

para encontrar \psi, donde la unicidad local ahora esta garantizada. Podemos calcular S^* de manear consistente.

(3) Resolver la ecuación:

\Delta(\psi N) = 2 \pi N \psi^{-1} (E^* + 2 S^*) + N \psi^{-7} \frac{7 f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij} }{8}

para N \psi, una ecuación lineal donde podemos aplicar el principio del máximo con lo que, con las codiciones de contorno apropiadas, se sigue la unicidad y existencia.

(4) Finalmente, resolver:

\Delta \beta^i + \frac{1}{3} \mathcal{D}^i ( \mathcal{D}_j \beta^j ) = D_j( 2 N \psi^{-6} \hat{A}^{ij} )

para encontrar \beta^i.

Además, en este otro artículo, presentan una manera de reducir una ecuación elíptica vectorial, un complicado sistema acoplado de PDEs, a un conjunto de ecuaciones Poisson escalares desacopladas. Para el caso del shift, la \beta anterior, por ejemplo, en coordenadas esféricas, tendríamos:

(1) Resolver ecuación:

\Delta \mu = \mu_S

que corresponde a la parte toroidal, para la resolución de la parte angular se introducen un potencial poloidal \eta y  un potencial toroidal \mu de manera que \boldsymbol{\beta} = , y está desacoplada del resto para obtener \mu.

(2) Resolver la también desacoplada ecuación para la divergencia (de \boldsymbol{\beta} respecto de la conexión plana \mathcal{D}):

\Delta \Theta = \frac{3}{4} \mathcal{D}_{\hat{k}} S(\boldsymbol{\beta}^{\hat{k}}).

(3) Obtener \beta^r a partir de una de las siguiente ecuaciones:

(i) \frac{\partial^2 \beta^r}{\partial r^2} + \frac{4}{r} \frac{\partial \beta^r}{\partial r} + \frac{2 \beta^r}{r^2} + \frac{1}{r^2}\Delta_{\theta \varphi} \beta^r = S(\boldsymbol{\beta})^r - \frac{1}{3} \frac{\partial \Theta}{\partial r} + \frac{2}{r} \Theta

(ii) \Delta \chi = r S(\boldsymbol{\beta})^r - \frac{r}{3} \frac{\partial \Theta}{\partial r} + 2 \Theta , donde \chi = r \beta^r

(4) Deducir \eta de una de las siguientes ecuaciones:

(i) \Delta_{\theta \varphi} \eta = r \Theta - r \frac{\partial \beta^r}{\delta r} - 2 \beta^r, que tiene la ventaja de que solo requiere una división por -l (l+1) de los coeficientes de la expansión por armónicos esféricos pero la desventaja de que utiliza la derivada radial de \beta^r que puede tener problemas con el orden.

(ii) \Delta \eta = \eta_S - \frac{2 \beta^r}{r^2} - \frac{1}{3} \frac{\Theta}{r}, que requiere la resolución de otra ecuación de Poisson adicional.

Anuncios