Suponemos n=5. En el caso de tener todas las fronteras con condiciones Dirichlet:

\frac{u_{0,1} -2u_{1,1} + u_{2,1}}{h^2} + \frac{u_{1,0} -2u_{1,1} + u_{1,2}}{h^2} = f_{1,1} para i,j=1,1,

\frac{u_{0,2} -2u_{1,2} + u_{2,2}}{h^2} + \frac{u_{1,1} -2u_{1,2} + u_{1,3}}{h^2} = f_{1,2} para i,j=1,2,

\frac{u_{0,3} -2u_{1,3} + u_{2,3}}{h^2} + \frac{u_{1,2} -2u_{1,3} + u_{1,4}}{h^2} = f_{1,3} para i,j=1,3,

\frac{u_{1,1} -2u_{2,1} + u_{3,1}}{h^2} + \frac{u_{2,0} -2u_{2,1} + u_{2,2}}{h^2} = f_{2,1} para i,j=2,1,

\frac{u_{1,2} -2u_{2,2} + u_{3,2}}{h^2} + \frac{u_{2,1} -2u_{2,2} + u_{2,3}}{h^2} = f_{2,2} para i,j=2,2,

\frac{u_{1,3} -2u_{2,3} + u_{3,3}}{h^2} + \frac{u_{2,2} -2u_{2,3} + u_{2,4}}{h^2} = f_{2,3} para i,j=2,3,

\frac{u_{2,1} -2u_{3,1} + u_{4,1}}{h^2} + \frac{u_{3,0} -2u_{3,1} + u_{3,2}}{h^2} = f_{3,1} para i,j=3,1,

\frac{u_{2,2} -2u_{3,2} + u_{4,2}}{h^2} + \frac{u_{3,1} -2u_{3,2} + u_{3,3}}{h^2} = f_{3,2} para i,j=3,2,

\frac{u_{2,3} -2u_{3,3} + u_{4,3}}{h^2} + \frac{u_{3,2} -2u_{3,3} + u_{3,4}}{h^2} = f_{3,3} para i,j=3,3,

de donde:

\begin{bmatrix} f_{1,1} -\frac{u_{1,0} + u_{0,1}}{h^2} & f_{1,2} - \frac{u_{0,2}}{h^2} & f_{1,3} - \frac{u_{0,3}+u_{1,4}}{h^2} \\ f_{2,1} -\frac{u_{2,0}}{h^2} & f_{2,2} & f_{2,3} - \frac{u_{2,4}}{h^2} \\ f_{3,1} - \frac{u_{3,0}+u_{4,1}}{h^2} & f_{3,2} - \frac{u_{4,2}}{h^2} & f_{3,3} - \frac{u_{4,3}+u_{3,4}}{h^2} \end{bmatrix}

En forma de matriz por bloques (para pensar en la simetrización):

\frac{1}{h^2} \begin{bmatrix} -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 \end{bmatrix} u_{i,j} = \begin{bmatrix} f_{1,1} -\frac{u_{1,0} + u_{0,1}}{h^2} \\ f_{1,2} - \frac{u_{0,2}}{h^2} \\ f_{1,3} - \frac{u_{0,3}+u_{1,4}}{h^2} \\ f_{2,1} -\frac{u_{2,0}}{h^2} \\ f_{2,2} \\ f_{2,3} - \frac{u_{2,4}}{h^2} \\ f_{3,1} - \frac{u_{3,0}+u_{4,1}}{h^2} \\ f_{3,2} - \frac{u_{4,2}}{h^2} \\ f_{3,3} - \frac{u_{4,3}+u_{3,4}}{h^2} \end{bmatrix}

¿Qué pasa ahora si en lugar de conocer u_{0,1}, u_{0,2}, u_{0,3} conocemos \frac{\partial}{\partial x}|_{0,1}u, \frac{\partial}{\partial x}|_{0,2}u, \frac{\partial}{\partial x}u|_{0,3}? Necesitamos tres ecuaciones mas:

\frac{u_{-1,1} -2u_{0,1} + u_{1,1}}{h^2} + \frac{u_{0,0} -2u_{0,1} + u_{0,2}}{h^2} = f_{0,1} para i,j=0,1

\frac{u_{-1,2} -2u_{0,2} + u_{1,2}}{h^2} + \frac{u_{0,1} -2u_{0,2} + u_{0,3}}{h^2} = f_{0,2} para i,j=0,2

\frac{u_{-1,3} -2u_{0,3} + u_{1,3}}{h^2} + \frac{u_{0,2} -2u_{0,3} + u_{0,4}}{h^2} = f_{0,3} para i,j=0,3

y

\frac{u_{1,1}-u_{-1,1}}{2h} = \frac{\partial}{\partial x}|_{0,1}u \Leftrightarrow u_{-1,1} = u_{1,1} - 2h \, \frac{\partial}{\partial x}|_{0,1}u

\frac{u_{1,2}-u_{-1,2}}{2h} = \frac{\partial}{\partial x}|_{0,2}u \Leftrightarrow u_{-1,2} = u_{1,2} - 2h \, \frac{\partial}{\partial x}|_{0,2}u

\frac{u_{1,3}-u_{-1,3}}{2h} = \frac{\partial}{\partial x}|_{0,3}u \Leftrightarrow u_{-1,3} = u_{1,3} - 2h \, \frac{\partial}{\partial x}|_{0,3}u

por lo que:

\begin{bmatrix} f_{0,1} +\frac{2h \, \frac{\partial}{\partial x}|_{0,1}u - u_{0,0}}{h^2} & f_{0,2} + \frac{2h \, \frac{\partial}{\partial x}|_{0,2}u}{h^2} & f_{0,3} + \frac{ 2h \, \frac{\partial}{\partial x}|_{0,3}u - u_{0,4}}{h^2} \\ f_{1,1} -\frac{u_{1,0}}{h^2} & f_{1,2} & f_{1,3} - \frac{u_{1,4}}{h^2} \\ f_{2,1} -\frac{u_{2,0}}{h^2} & f_{2,2} & f_{2,3} - \frac{u_{2,4}}{h^2} \\ f_{3,1} - \frac{u_{3,0}+u_{4,1}}{h^2} & f_{3,2} - \frac{u_{4,2}}{h^2} & f_{3,3} - \frac{u_{4,3}+u_{3,4}}{h^2} \end{bmatrix}

La matriz queda:

\frac{1}{h^2} \begin{bmatrix} -4 & 1 & 0 & 2 & 0 & 0 & \ldots \\ 1 & -4 & 1 & 0 & 2 & 0 & \ldots \\ 0 & 1 & -4 & 0 & 0 & 2 & \ldots \\ 1 & 0 & 0 & -4 & 1 & 0 & \ldots \\ 0 & 1 & 0 & 1 & -4 & 1 & \ldots \\ 0 & 0 & 1 & 0 & 1 & -4 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}

Que podemos simetrizar:

\frac{1}{h^2} \begin{bmatrix} -2 & \frac{1}{2} & 0 & 1 & 0 & 0 & \ldots \\ \frac{1}{2} & -2 & \frac{1}{2} & 0 & 1 & 0 & \ldots \\ 0 & \frac{1}{2} & -2 & 0 & 0 & 1 & \ldots \\ 1 & 0 & 0 & -4 & 1 & 0 & \ldots \\ 0 & 1 & 0 & 1 & -4 & 1 & \ldots \\ 0 & 0 & 1 & 0 & 1 & -4 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}

con:

\begin{bmatrix} \frac{1}{2}(f_{0,1} +\frac{2h \, \frac{\partial}{\partial x}|_{0,1}u - u_{0,0}}{h^2}) & \frac{1}{2}(f_{0,2} + \frac{2h \, \frac{\partial}{\partial x}|_{0,2}u}{h^2}) & \frac{1}{2}(f_{0,3} + \frac{ 2h \, \frac{\partial}{\partial x}|_{0,3}u - u_{0,4}}{h^2}) \\ f_{1,1} -\frac{u_{1,0}}{h^2} & f_{1,2} & f_{1,3} - \frac{u_{1,4}}{h^2} \\ f_{2,1} -\frac{u_{2,0}}{h^2} & f_{2,2} & f_{2,3} - \frac{u_{2,4}}{h^2} \\ f_{3,1} - \frac{u_{3,0}+u_{4,1}}{h^2} & f_{3,2} - \frac{u_{4,2}}{h^2} & f_{3,3} - \frac{u_{4,3}+u_{3,4}}{h^2} \end{bmatrix}

Si las condiciones las tenemos sobre la derivada en el extremo opuesto llegaremos a la misma estructura pero en la parte inferior de la frontera y de la matriz.

Si las condiciones las tenemos sobre derivadas en la otra dirección, podemos llegar también a estas estructuras tomando el orden de variables donde tiene prioridad la variable contraria a la tomada en los casos anteriores.

Anuncios