Definimos a los kernels como funciones del tipo:

W_{ab}=W(\boldsymbol{r}_a - \boldsymbol{r}_b,h),

donde a es la partícula en la que está centrada la función y b es una partícula dentro del soporte compacto de la función kernel, controlado éste último por h, la smoothing length (longitud de suavizado).

En este post básicamente pretendo aclarar lo que significa \nabla_a W_{ab} cuando, por ejemplo, tenemos definido el kernel como:

W(q) = \alpha_D \exp (-q^2) con 0 \leq q \leq 2.

Para empezar, \alpha_D es una constante de dimensionalidad, por lo que la fórmula está escrita de manera compacta y sirve para cualquier dimensión. Además, tenemos que q = \frac{r}{h}, siendo r la distancia ente las partículas, por lo que:

r = |\boldsymbol{r}_a - \boldsymbol{r}_b| =^{(3D)} \sqrt{(x_a-x_b)^2 + (y_a-y_b)^2 + (z_a-z_b)^2}.

Si fijamos la posición de la partícula a, la función que nos da la distancia de esta a cualquier punto dentro del soporte compacto es:

r_a (\boldsymbol{r}) = |\boldsymbol{r}_a-\boldsymbol{r}| =^{(3D)} \sqrt{(x_a-x)^2 + (y_a-y)^2 + (z_a-z)^2},

siendo q_a lo mismo añadiendo el factor h.

Por lo tanto, en este caso tenemos, en tres dimensiones y donde b es una partícula en una posición arbitraria (x,y,z):

\nabla_a W_{ab}(q) =^{(3D)} (\partial_x W_{ab}(q_a), \partial_y W_{ab}(q_a), \partial_z W_{ab}(q_a)) =

= \alpha_D \exp(-q^2) (-2q) (\partial_x (q_a), \partial_y (q_a), \partial_z (q_a)) = \alpha_D \exp(-q^2) (-2q) \nabla_a q_a

donde:

\nabla_a q_a = \frac{-1}{h r_a} (x_a-x,y_a-y,z_a-z).

De la misma manera, si tenemos:

W(q) = \alpha_D \begin{cases} 1-\frac{3}{2} q^2 + \frac{3}{4} q^3, 0 \leq q < 1\\ \frac{1}{4} (2-q)^3, 1 \leq q < 2 \\ 0, q \geq 2 \end{cases}

entonces:

\nabla_a W_{ab}(q) = \alpha_D \begin{cases} (-3q + \frac{9}{4}q^2) \nabla_a q_a, 0 \leq q < 1 \\ -\frac{3}{4} (2-q)^2 \nabla_a q_a, 1 \leq q < 2 \\ 0, q \geq 2 \end{cases}

Así pues:

\nabla W(q) = \frac{d}{dq} W(q) \nabla q.

 

Anuncios