Seguimos utilizando la misma función mencionada aquí.

Compactificaremos de tres manera diferentes:

\boxed{\boxed{r = \frac{a \bar{r}}{1 - \bar{r}}}} (y no \frac{a \bar{r}}{a - \bar{r}} como escribimos en este post)

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan (\bar{r} lo representamos mediante R en Mathematica):

ChrSym_SphCom

CovDer_SphCom

Para la base \{ \frac{(1-\bar{r})^2}{a} \partial_{\bar{r}}, \frac{1-\bar{r}}{a \bar{r}} \partial_{\theta}, \frac{1-\bar{r}}{a \bar{r}}\csc \theta \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor

CovDer_SphComNor

\boxed{\boxed{r=a\, \mbox{arctanh} \bar{r}}}

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_SphCom2

CovDer_SphCom2

Para la base \{ \frac{1-\bar{r}^2}{a}\partial_{\bar{r}}, \frac{1}{a\, \mbox{\scriptsize arctanh}\, \bar{r}} \partial_{\theta}, \frac{\csc \theta}{a\, \mbox{\scriptsize arctanh} \,\bar{r}} \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor2

CovDer_SphComNor2

\boxed{\boxed{r = a \tan \frac{\pi \bar{r}}{2}}}

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_SphCom3

CovDer_SphCom3

Para la base \{ \frac{1+\cos \pi \bar{r}}{a \pi} \partial_{\bar{r}}, \frac{\cot \frac{\pi \bar{r}}{2}}{a} \partial_{\theta}, \frac{\cot \frac{\pi \bar{r}}{2}}{a} \csc \theta \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor3

CovDer_SphComNor3

Anuncios