Copio a continuación la salida generada por nuestra función en Mathematica que nos calcula todas las derivadas covariantes de tensores con dos índices (aunque en este caso particular no es excesivamente laborioso, si lo es para el resto de entradas, por lo que evitaremos morir en el intento de pasarlas a latex 😉 ) . En particular, aquí lo hacemos para un vector dos veces contravariante y para la base ortonormal:

CovDerTen2CarCom1,

donde primer término corresponde al factor que acompaña a la derivada parcial y la matriz contiene los factores que acopañan a cada par de valores de los índices.

Vamos a ver ahora, en este caso, como quedan las ecuaciones del shift. Para la primera:

\boxed{\Delta \Theta_\beta = \frac{3}{2} \mathcal{D}_i \mathcal{D}_j (\alpha \psi^{-6} \hat{A}^{ij}) },

como contraemos el índice j quedando libre únicamente el i, definimos

V^i := \mathcal{D}_j \alpha \psi^{-6} \hat{A}^{ij},

de manera que la ecuación original la reescribimos como

\Delta \Theta_\beta = \frac{3}{2} \mathcal{D}_i V^i,

que nos ayudará a no liarnos, ya que ésta última queda como una derivada covariante de un vector donde éste, a su vez, lo calcularemos a parte como la derivada covariante de un tensor dos veces contravariante.

De esta manera, en nuestras coordenadas tenemos:

\Delta \Theta_\beta = \frac{3}{2} \mathcal{D}_i V^i = \frac{3}{2} (\mathcal{D}_{\bar{x}} V^{\bar{x}} + \mathcal{D}_{\bar{y}} V^{\bar{y}} + \mathcal{D}_{\bar{z}} V^{\bar{z}}) =

= \frac{3}{2} (\frac{|\bar{x}^2-1|}{a} \partial_{\bar{x}} V^{\bar{x}}+ \frac{|\bar{y}^2-1|}{b} \partial_{\bar{y}} V^{\bar{y}} + \frac{|\bar{z}^2-1|}{c} \partial_{\bar{z}} V^{\bar{z}}),

donde

V^{\bar{x}} = \mathcal{D}_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{x}}) + \mathcal{D}_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{x} \bar{y}} ) + \mathcal{D}_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{x} \bar{z}} ),

V^{\bar{y}} = \mathcal{D}_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{x}}) + \mathcal{D}_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{y} \bar{y}} ) + \mathcal{D}_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{y} \bar{z}} ),

V^{\bar{z}} = \mathcal{D}_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{x}}) + \mathcal{D}_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{z} \bar{y}} ) + \mathcal{D}_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{z} \bar{z}} ),

que desarrollando las covariantes según lo encontrado al principio del post, quedan:

V^{\bar{x}} = \frac{|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{x}}) + \frac{|\bar{y}^2-1|}{b} \partial_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{x} \bar{y}} ) + \frac{|\bar{z}^2-1|}{c} \partial_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{x} \bar{z}} ),

V^{\bar{y}} = \frac{|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{x}}) + \frac{|\bar{y}^2-1|}{b} \partial_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{y} \bar{y}} ) + \frac{|\bar{z}^2-1|}{c} \partial_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{y} \bar{z}} ),

V^{\bar{z}} = \frac{|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{x}}) + \frac{|\bar{y}^2-1|}{b} \partial_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{z} \bar{y}} ) + \frac{|\bar{z}^2-1|}{c} \partial_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{z} \bar{z}} ).

Por tanto, combiando todo, tenemos:

\Delta \Theta_\beta =

= \frac{3|\bar{x}^2-1|}{2a} \partial_{\bar{x}} \big [ \frac{|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{x}}) +

+ \frac{|\bar{y}^2-1|}{b} \partial_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{x} \bar{y}} ) +

+ \frac{|\bar{z}^2-1|}{c} \partial_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{x} \bar{z}} ) \big ] +

+ \frac{3|\bar{y}^2-1|}{2b} \partial_{\bar{y}} \big [ \frac{|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{x}}) +

+ \frac{|\bar{y}^2-1|}{b} \partial_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{y} \bar{y}} ) +

+ \frac{|\bar{z}^2-1|}{c} \partial_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{y} \bar{z}} ) \big ] +

+ \frac{3|\bar{z}^2-1|}{2c} \partial_{\bar{z}} \big [ \frac{|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{x}}) +

\frac{|\bar{y}^2-1|}{b} \partial_{\bar{y}} ( \alpha \psi^{-6} \hat{A}^{\bar{z} \bar{y}} ) +

+ \frac{|\bar{z}^2-1|}{c} \partial_{\bar{z}} ( \alpha \psi^{-6} \hat{A}^{\bar{z} \bar{z}} ) \big ],

Para terminar, nos quedan la ecuaciónes:

\boxed{\Delta \beta^i = 2\mathcal{D}_j ( \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }.

En primer lugar, bajamos el índice de la derivada contravariante:

\mathcal{D}^{\bar{x}} \Theta_\beta = f^{\bar{x} i} \mathcal{D}_i \Theta_\beta = f^{\bar{x} \bar{x}} \mathcal{D}_{\bar{x}} \Theta_\beta + f^{\bar{x} \bar{y}} \mathcal{D}_{\bar{y}} \Theta_\beta + f^{\bar{x} \bar{z}} \mathcal{D}_{\bar{z}} \Theta_\beta = \mathcal{D}_{\bar{x}} \Theta_\beta,

y de la misma manera:

\mathcal{D}^{\bar{y}} = \mathcal{D}_{\bar{y}} y \mathcal{D}^{\bar{z}} = \mathcal{D}_{\bar{z}}.

Así pues, lo que nos queda es:

\Delta \beta^{\bar{x}} = 2 \big [ \mathcal{D}_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{x}}) + \mathcal{D}_{\bar{y}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{y}}) + \mathcal{D}_{\bar{z}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{z}}) \big ] - \frac{1}{3} \mathcal{D}_{\bar{x}} \Theta_\beta,

\Delta \beta^{\bar{y}} = 2 \big [ \mathcal{D}_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{x}}) + \mathcal{D}_{\bar{y}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{y}}) + \mathcal{D}_{\bar{z}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{z}}) \big ] - \frac{1}{3} \mathcal{D}_{\bar{y}} \Theta_\beta,

\Delta \beta^{\bar{z}} = 2 \big [ \mathcal{D}_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{x}}) + \mathcal{D}_{\bar{y}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{y}}) + \mathcal{D}_{\bar{z}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{z}}) \big ] - \frac{1}{3} \mathcal{D}_{\bar{z}} \Theta_\beta,

que al sustituir las derivadas covariantes del tensor dos veces contravariante \hat{A}^{ab} y del escalar \Theta_\beta, por su valor calculado al principio del post, quedan:

\Delta \beta^{\bar{x}} = \frac{2|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{x}}) +

+ \frac{2|\bar{y}^2-1|}{b} \partial_{\bar{y}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{y}}) +

+ \frac{2|\bar{z}^2-1|}{c} \partial_{\bar{z}} (\alpha \psi^{-6} \hat{A}^{\bar{x} \bar{z}}) - \frac{|\bar{x}^2-1|}{3a} \partial_{\bar{x}} \Theta_\beta,

\Delta \beta^{\bar{y}} = \frac{2|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{x}}) +

+ \frac{2|\bar{y}^2-1|}{b} \partial_{\bar{y}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{y}}) +

+ \frac{2|\bar{z}^2-1|}{c} \partial_{\bar{z}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{z}}) - \frac{|\bar{y}^2-1|}{3b} \partial_{\bar{y}} \Theta_\beta,

\Delta \beta^{\bar{z}} = \frac{2|\bar{x}^2-1|}{a} \partial_{\bar{x}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{x}}) +

+ \frac{2|\bar{y}^2-1|}{b} \partial_{\bar{y}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{y}}) +

+ \frac{2|\bar{z}^2-1|}{c} \partial_{\bar{z}} (\alpha \psi^{-6} \hat{A}^{\bar{z} \bar{z}}) - \frac{|\bar{z}^2-1|}{3c} \partial_{\bar{z}} \Theta_\beta.

Anuncios