Recordemos lo ya expuesto en este post: que en las coordenadas biesféricas (\xi, \eta, \varphi), las dos primeras (\xi, \eta) provienen de las coordenadas bipolares, donde la primera indica el ángulo entre las dos rectas que unen nuestro punto con los dos focos que necesitamos para determinar las bipolares y la segundo es el logartimo del ratio entre la longitud de estas dos rectas, mientras que la última proviene de rotarlas alrededor del eje que une los focos.

Compactificamos la segunda coordenada mediante \boxed{\eta = \frac{b \bar{\eta}}{1 - \bar{\eta}}}.

El Laplaciano, en estas coordenadas y con esta compactificación, queda:

\Delta = \frac{(\cos \xi - \mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}})^2}{a^2} \big [ \partial_{\xi \xi} + \csc \xi \frac{-1 + \cos \xi \, \mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}}}{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}} - \cos \xi} \partial_{\xi}

+\frac{(\bar{\eta} - 1)^4}{b^2} \partial_{\bar{\eta} \bar{\eta}} + \frac{(\bar{\eta} - 1)^2}{b^2} (2(\bar{\eta}-1) -\frac{b \, \mbox{\scriptsize sinh} \frac{b \bar{\eta}}{1 - \bar{\eta}}}{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}) \partial_{\bar{\eta}} + \csc^2 \xi \partial_{\varphi} \big ],

las derivadas covariantes de covectores (1-formas):

CovDer_BiSphComNor1

y las fuentes:

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

\Delta \Theta_X = 6 \pi f^{ji} \mathcal{D}_i S^*_j = 6 \pi ( \mathcal{D}_{\xi} S^*_{\xi} + \mathcal{D}_{\bar{\eta}} S^*_{\bar{\eta}} + \mathcal{D}_{\varphi} S^*_{\varphi} ) =

s1_biSphComNor1

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

Pasando la derivada contravariante a covariante mediante la métrica, queda:

\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X.

Definimos ahora

S_X^i := 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X,

de manera que:

S_X^{\xi} = 8 \pi f^{\xi j} S^*_j - \frac{1}{3} f^{\xi k}\mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\xi} - \frac{1}{3} \mathcal{D}_{\xi} \Theta_X =

= 8 \pi S^*_{\xi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \partial_{\xi} \Theta_X

S_X^{\bar{\eta}} = 8 \pi f^{\bar{\eta} j} S^*_j - \frac{1}{3} f^{\bar{\eta} k} \mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\bar{\eta}} - \frac{1}{3} \mathcal{D}_{\bar{\eta}} \Theta_X =

= 8 \pi S^*_{\bar{\eta}} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \frac{(\bar{\eta} - 1)^2}{b} \partial_{\bar{\eta}} \Theta_X

S_X^{\varphi} = 8 \pi f^{\varphi j} S^*_j - \frac{1}{3} f^{\varphi k} \mathcal{D}^{k} \Theta_X = 8 \pi S^*_{\varphi} - \frac{1}{3} \mathcal{D}_{\varphi} \Theta_X =

= 8 \pi S^*_{\varphi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \csc \xi \partial_{\varphi} \Theta_X

En este punto tenemos que el vector

(S_X^{\xi}(\xi,\bar{\eta},\varphi),S_X^{\bar{\eta}}(\xi,\bar{\eta},\varphi),S_X^{\varphi}(\xi,\bar{\eta},\varphi))

expresado en la base que resulta de normalizar la base coordenada \{ \partial_{\xi}, \partial_{\bar{\eta}}, \partial_{\varphi} \}. Lo que hacemos ahora es expresar este vector en la nueva base \{ \partial_x, \partial_y, \partial_z \}, de manera que obtenemos

(S_X^{x}(\xi,\bar{\eta},\varphi),S_X^{y}(\xi,\bar{\eta},\varphi),S_X^{z}(\xi,\bar{\eta},\varphi)).

y como es esta base las ecuaciones están desacopladas y \Theta_X es un campo escalar, resolvemos independientemente:

\Delta X^{x} = S_X^{x},

\Delta X^{y} = S_X^{y},

\Delta X^{z} = S_X^{z}.

Finalmente, con el cambio de base inverso, calculamos a partir de (X^{x},X^{y},X^{z}) el vector (X^{\xi},X^{\bar{\eta}},X^\varphi) .

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

Necesitamos ahora la derivada covariante de un vector (hasta ahora habían coincidido las derivadas covariantes de vectores y covectores, pero en este caso no):

CovDer_BiSphComNor1_vec

volvemos a pasar las derivadas contravariantes a covariantes:

\hat{A}^{ij} = f^{im} \mathcal{D}_m X^j + f^{jn} \mathcal{D}_n X^i - \frac{2}{3} f^{ij} \mathcal{D}_k X^{k}

y obtenemos:

\hat{A}^{\xi \xi} = f^{\xi m} \mathcal{D}_m X^{\xi} + f^{\xi n} \mathcal{D}_n X^{\xi} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( 2 \mathcal{D}_{\xi} X^{\xi} - \mathcal{D}_{\bar{\eta}} X^{\bar{\eta}} - \mathcal{D}_{\varphi} X^{\varphi}) =

A11_biSphComNor1

\hat{A}^{\xi \bar{\eta}} = f^{\xi m} \mathcal{D}_m X^{\bar{\eta}} + f^{\bar{\eta} n} \mathcal{D}_n X^{\xi} = \mathcal{D}_{\xi} X^{\bar{\eta}} + \mathcal{D}_{\bar{\eta}} X^{\xi} =

A12_biSphComNor1

\hat{A}^{\xi \varphi} = f^{\xi m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\xi} = \mathcal{D}_{\xi} X^{\varphi} + \mathcal{D}_{\varphi} X^{\xi} =

A13_biSphComNor1

\hat{A}^{\bar{\eta} \bar{\eta}} = f^{\bar{\eta} m} \mathcal{D}_m X^{\bar{\eta}} + f^{\bar{\eta} n} \mathcal{D}_n X^{\bar{\eta}} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\xi} X^{\xi} + 2 \mathcal{D}_{\bar{\eta}} X^{\bar{\eta}} - \mathcal{D}_{\varphi} X^{\varphi}) =

A22_biSphComNor1

\hat{A}^{\bar{\eta} \varphi} = f^{\bar{\eta} m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\bar{\eta}} = \mathcal{D}_{\bar{\eta}} X^{\varphi} + \mathcal{D}_{\varphi} X^{\bar{\eta}} =

A23_biSphComNor1

\hat{A}^{\varphi \varphi} = f^{\varphi m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\varphi} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\bar{r}} X^{\bar{r}} - \mathcal{D}_{\theta} X^{\theta} +2 \mathcal{D}_{\varphi} X^{\varphi}) =

A33_biSphComNor1

Las dos ecuaciones no lineales correspondientes al factor conforme \psi y al lapse \alpha, como no contienen derivadas covariantes, quedan como las teniamos:

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

Finalmente, para el shift \beta y su ecuación auxiliar tenemos:

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

que trataremos en el siguiente post.

Anuncios