You are currently browsing the monthly archive for marzo 2014.

Ya comentamos en este post el formalismo Lagrangiano (coordenadas generalizadas de posiciones y velocidades). Vamos a comentar ahora la imagen Hamiltoniana.

Como en el caso anterior, utilizamos coordenadas de posición generalizadas q^1, \ldots, q^n que ahora irán acompañadas de las coordenadas de los momentos generalizados p^1, \ldots, p^n. Para una única partícula libre,  el momento no es mas que las velocidad multiplicada por la masa, y en general, siempre podemos obtenerlo a partir del Lagrangiano:

p_r = \frac{\partial}{\partial \dot{q}^r} \mathcal{L},

que nos proporciona las coordenadas para el espacio cotangente y poder escribir el covector como p_a dq^a.

Con todo ésto, la función Hamiltoniana se define como:

\mathcal{H} := \mathcal{H}(q^1,\ldots,q^n;p_1,\ldots,p_n),

y una manera de obtenerlo a partir del Lagrangiano es:

\mathcal{H} = [\dot{q}^r \frac{\partial}{\partial\dot{q}^r} - 1 ] \mathcal{L},

reescrita en términos de los momentos (y no las velocidades, que son las que aparecen en \mathcal{L}).

Al pasar al mundo cuántico, podemos identificar los momentos con los operadores diferenciales introduciendo el factor \hbar := \frac{h}{2 \pi}:

p_a = i \hbar \frac{\partial}{\partial x^a},

para el momento asociado a la posición x^a.

Y no solo eso. Si consideramos las variables de los momentos p_a como primarias y queremos obtener las de posición x^a a partir de éstas, exite una simetría muy precisa entre el espacio de momentos y el espacio de posiciones, de manera que tenemos:

x^a = i \hbar \frac{\partial}{\partial p_a},

donde la transformada de Fourier juega un papel importante también ahora.

En ambos casos, podemos obtener la regla de conmutación canónica que relaciona posiciones y momentos lineales:

p_a x^a - x^a p_a = i \hbar \delta^a_b.

Anuncios

Dos funciones continuas f,g: X \rightarrow Y son homotópicas si podemos transformar continuamente una en otra, es decir, si existe una función continua:

H:[0,1] \times X \rightarrow Y,

tal que H(0,\mathbf{x})=f(\mathbf{x}) y H(1,\mathbf{x})=g(\mathbf{x}).

A continuación, dos animaciones que hemos creado donde podemos ver estas deformaciones continuas, mediante combinaciones convexas, de curvas (1-variedades) y superficies (2-variedades):

Recordemos lo ya expuesto en este post: que en las coordenadas esferoidales prolatas (\mu, \nu, \varphi), las dos primeras (\mu, \nu) provienen de las coordenadas elípticas, donde \mu \in ]0,+\infty[ y \nu \in ]0,2\pi[, mientras que la última \varphi \in ]0,2\pi[ proviene de rotarlas alrededor del eje que une los focos.

Compactificamos la primera coordenada mediante \boxed{\mu = b \tan \frac{\pi \bar{\mu}}{2}}.

El Laplaciano y las fuentes, en estas coordenadas y con esta compactificación, utilizando una nueva función en Mathematica que nos lo calcula todo, quedan:

lap_ellComNor2

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

s1_ellComNor2

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

s21_ellComNor2

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

A1x_ellComNor2

A2x_ellComNor2

A3x_ellComNor2

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

Las coordenas elípticas vienen definidas por:

x = a \, \mbox{cosh} \mu \cos \nu,

y = a \, \mbox{sinh} \mu \sin \nu,

donde las líneas coordenadas son elípses e hipérbolas:

Para pasar a coordenadas tridimensionales tenemos tres opciones:

  1. extruir a lo largo del eje z: coordenadas cilíndricas elípticas,
  2. rotar alrededor del eje que une los dos focos: coordenadas esferoidales prolatas,
  3. rotar alrededor del eje perpendicular al eje anterior y que separa ambos focos: coordenadas esferoidales oblatas.

A continuación un gráfico donde se ven combinadas:

sphBiSph

marzo 2014
L M X J V S D
« Feb   Abr »
 12
3456789
10111213141516
17181920212223
24252627282930
31