Ya comentamos en este post el formalismo Lagrangiano (coordenadas generalizadas de posiciones y velocidades). Vamos a comentar ahora la imagen Hamiltoniana.

Como en el caso anterior, utilizamos coordenadas de posición generalizadas q^1, \ldots, q^n que ahora irán acompañadas de las coordenadas de los momentos generalizados p^1, \ldots, p^n. Para una única partícula libre,  el momento no es mas que las velocidad multiplicada por la masa, y en general, siempre podemos obtenerlo a partir del Lagrangiano:

p_r = \frac{\partial}{\partial \dot{q}^r} \mathcal{L},

que nos proporciona las coordenadas para el espacio cotangente y poder escribir el covector como p_a dq^a.

Con todo ésto, la función Hamiltoniana se define como:

\mathcal{H} := \mathcal{H}(q^1,\ldots,q^n;p_1,\ldots,p_n),

y una manera de obtenerlo a partir del Lagrangiano es:

\mathcal{H} = [\dot{q}^r \frac{\partial}{\partial\dot{q}^r} - 1 ] \mathcal{L},

reescrita en términos de los momentos (y no las velocidades, que son las que aparecen en \mathcal{L}).

Al pasar al mundo cuántico, podemos identificar los momentos con los operadores diferenciales introduciendo el factor \hbar := \frac{h}{2 \pi}:

p_a = i \hbar \frac{\partial}{\partial x^a},

para el momento asociado a la posición x^a.

Y no solo eso. Si consideramos las variables de los momentos p_a como primarias y queremos obtener las de posición x^a a partir de éstas, exite una simetría muy precisa entre el espacio de momentos y el espacio de posiciones, de manera que tenemos:

x^a = i \hbar \frac{\partial}{\partial p_a},

donde la transformada de Fourier juega un papel importante también ahora.

En ambos casos, podemos obtener la regla de conmutación canónica que relaciona posiciones y momentos lineales:

p_a x^a - x^a p_a = i \hbar \delta^a_b.

Anuncios