You are currently browsing the monthly archive for mayo 2014.

Tenemos:

  1. \bar{r} := \frac{r}{r+a}
  2. \Delta := \frac{(1-\bar{r})^4}{a^2} \partial_{\bar{r}\bar{r}} + \frac{(1-\bar{r})^4}{a^2}\frac{2}{\bar{r}} \partial_{\bar{r}}
  3. \Delta \Theta_X = 6 \pi [ \frac{(1-\bar{r})^2}{a} \partial_{\bar{r}} S^*_{\bar{r}} + \frac{1 - \bar{r}}{a} \frac{2}{\bar{r}} S^*_{\bar{r}} + \frac{1-\bar{r}}{a} \frac{\cot \theta}{\bar{r}} S^*_{\theta}]
  4. \Delta X^{\bar{r}} = 8 \pi S^*_{\bar{r}} - \frac{1}{3} \frac{(1-\bar{r})^2}{a} \partial_{\bar{r}} \Theta_X
  5. \hat{A}^{\bar{r}\bar{r}} = \frac{4}{3}\frac{(1-\bar{r})^2}{a} \partial_{\bar{r}} X^{\bar{r}} - \frac{2}{3}2\frac{1-\bar{r}}{a}\frac{1}{\bar{r}} X^{\bar{r}}
  6. \Delta \Theta_\beta = \frac{3}{2}[\frac{(1-\bar{r})^4}{a^2} \partial_{\bar{r}\bar{r}}u + \frac{(1-\bar{r})^3(2-\bar{r})}{2a^2} \frac{4}{\bar{r}}u + \frac{(1-\bar{r})^2}{a^2} \frac{2}{\bar{r}^2}u]

con:

u:=\alpha \psi^{-6} \hat{A}^{\bar{r}\bar{r}}

y:

\{\frac{2 (\bar{r}_i - 1)^4 (\bar{r_i} - (\bar{r}_{i+1} - \bar{r}_i))}{a^2 (\bar{r}_i - \bar{r}_{i-1}) \bar{r_i} (\bar{r}_{i+1} - \bar{r}_{i-1} )},

\frac{(\bar{r}_i - 1)^2 (\frac{-2}{h_\theta^2 \bar{r}_i^2} + \frac{(\bar{r}_i - 1)^2 ((r_{i+1}-r_i)-(r_i-r_{i-1})-2)}{(r_{i+1}-r_i)(r_i - r_{i-1})} + \frac{-2 \csc^2 \theta_i}{h_\varphi^2 \bar{r}_i^2})}{a^2},

\frac{2 (\bar{r}_i - 1)^4 ((\bar{r}_{i} - \bar{r}_{i-1}) + \bar{r_i})}{a^2 (\bar{r}_{i+1} - \bar{r}_i) \bar{r}_i (\bar{r}_{i+1} - \bar{r}_{i-1} )} \}

Anuncios

Para aproximar la primera y segunda derivada de una función f(x) mediante tres puntos estamos habituados a las fórmulas:

f'(x) \approx \frac{f_{i+1}-f_{i-1}}{2h} = \frac{-1}{2h} f_{i-1} + \frac{1}{2h} f_{i+1},

f''(x) \approx \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2} = \frac{1}{h^2} f_{i-1} + \frac{-2}{h^2} f_i + \frac{1}{h^2} f_{i+1}.

En estas expresiones estamos asumiendo que los puntos están equiespaciados una distancia h. ¿Cómo quedan las formulas en el caso de que la distancia entre los dos primeros puntos lx sea diferente a la distancia entre los dos últimos rx? Existen varias maneras de calcularlo, por ejemplo mediante interpolación de Lagrange como ya hicimos en este post, y quedan:

f'(x) \approx \frac{-rx}{lx(lx+rx)} f_{i-1} + \frac{rx - lx}{lx rx} f_i + \frac{lx}{(lx+rx)rx} f_{i+1},

f''(x) \approx \frac{2}{lx(lx+rx)} f_{i-1} + \frac{-2}{lx rx} f_i + \frac{2}{(lx+rx)rx} f_{i+1}.

mayo 2014
L M X J V S D
« Abr   Jun »
 1234
567891011
12131415161718
19202122232425
262728293031