Para aproximar la primera y segunda derivada de una función f(x) mediante tres puntos estamos habituados a las fórmulas:

f'(x) \approx \frac{f_{i+1}-f_{i-1}}{2h} = \frac{-1}{2h} f_{i-1} + \frac{1}{2h} f_{i+1},

f''(x) \approx \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2} = \frac{1}{h^2} f_{i-1} + \frac{-2}{h^2} f_i + \frac{1}{h^2} f_{i+1}.

En estas expresiones estamos asumiendo que los puntos están equiespaciados una distancia h. ¿Cómo quedan las formulas en el caso de que la distancia entre los dos primeros puntos lx sea diferente a la distancia entre los dos últimos rx? Existen varias maneras de calcularlo, por ejemplo mediante interpolación de Lagrange como ya hicimos en este post, y quedan:

f'(x) \approx \frac{-rx}{lx(lx+rx)} f_{i-1} + \frac{rx - lx}{lx rx} f_i + \frac{lx}{(lx+rx)rx} f_{i+1},

f''(x) \approx \frac{2}{lx(lx+rx)} f_{i-1} + \frac{-2}{lx rx} f_i + \frac{2}{(lx+rx)rx} f_{i+1}.

Anuncios