You are currently browsing the category archive for the ‘Partículas’ category.

Aparece en Science el artículo “Holographic description of quantum black hole on a computer” en el que parece ser el primer trabajo de gravedad cuántica numérica. Traduciremos a continuación el abstract y enlazaremos con futuras entradas donde explicaremos cada uno de los conceptos expuestos en éste.

“El descubrimiento de que los agujeros negros radían partículas y eventualmente pueden evaporarse llevó a Hawking a plantear la conocida paradoja de la pérdida de información. Esta paradoja provocó un largo y sério debate ya que afirmaba que las leyes fundamentales de la mecánica cuántica podían ser violadas. Una posible solución ha emergido recientemente desde la teoría de supercuerdas, una teoría consistente de gravedad cuántica: si el la descripción holográfica de un agujero negro cuántico basada en la dualidad gauge/gravedad es correcta, la información no se pierde y los mecanismos cuánticos permanecen válidos. Aquí ponemos a prueba esta dualidad gauge/gravedad en un ordenador al nivel de gravedad cuántica por primera vez. La masa del agujero negro obtenida por simulaciones Monte Carlo de la teoría gauge dual reproduce de manera precisa los efectos de gravedad cuántica en un agujero negro en evaporación. Este resultado abre nuevas perpectivas totalmente nuevas hacia la gravedad cuántica ya que uno puede simular agujeros negros cuánticos a través de las teorías gauge duales.”

Interesante, no? 🙂

Anuncios

A mi casi-código SPH le he añadido la libreria Voro++ de Chris Rycroft y ésta va calculando las correspondientes teselaciones de Voronoi tridimensionales correspondientes a las partículas siguiendo movimientos pendulares (sobre planos z=cte) .

Pulsar sobre la imagen para empezar la animación.animate_1

En el post anterior hemos comentado algunos grupos topológicos, que veremos en posteriores entradas que están dotados de mas estructura (grupos de Lie), que son importantes para la física. Introducimos brevemente aquí el modelo estandar de la física de partículas. Concretamente, estaremos interesados en:

SU(3) \times SU(2) \times U(1),

que hace referencia a las simetrías del lagrangiano correspondiente.

Las partículas tienen masa, espín y carga como características principales.

En el modelo estandar tenemos:

  • 12 fermiones (o partículas de materia) con espín \frac{1}{2}: los 6 leptones (electrón e, muón \mu y tauón \tau con sus respectivos neutrinos \nu_e, \nu_\mu y \nu_\tau), y los 6 quarks (up u y down d, charm c y strange s, top t y bottom b).
  • 4 bosones (o partículas mediadoras de fuerzas) con espín 1: el fotón \gamma para la interacción electromagnética, cuyo grupo gauge es U(1); los bosones W^+, W^- y Z^0 para las interacciones nucleares débiles, con grupo SU(2); y los 8 gluones para la interacción nuclear fuerte, con grupo SU(3).

La siguiente imagen es un excelente resumen de todo lo escrito:

Standard_Model_of_Elementary_Particles-es

octubre 2017
L M X J V S D
« Ago    
 1
2345678
9101112131415
16171819202122
23242526272829
3031