You are currently browsing the category archive for the ‘Relatividad’ category.

Aparece en Science el artículo “Holographic description of quantum black hole on a computer” en el que parece ser el primer trabajo de gravedad cuántica numérica. Traduciremos a continuación el abstract y enlazaremos con futuras entradas donde explicaremos cada uno de los conceptos expuestos en éste.

“El descubrimiento de que los agujeros negros radían partículas y eventualmente pueden evaporarse llevó a Hawking a plantear la conocida paradoja de la pérdida de información. Esta paradoja provocó un largo y sério debate ya que afirmaba que las leyes fundamentales de la mecánica cuántica podían ser violadas. Una posible solución ha emergido recientemente desde la teoría de supercuerdas, una teoría consistente de gravedad cuántica: si el la descripción holográfica de un agujero negro cuántico basada en la dualidad gauge/gravedad es correcta, la información no se pierde y los mecanismos cuánticos permanecen válidos. Aquí ponemos a prueba esta dualidad gauge/gravedad en un ordenador al nivel de gravedad cuántica por primera vez. La masa del agujero negro obtenida por simulaciones Monte Carlo de la teoría gauge dual reproduce de manera precisa los efectos de gravedad cuántica en un agujero negro en evaporación. Este resultado abre nuevas perpectivas totalmente nuevas hacia la gravedad cuántica ya que uno puede simular agujeros negros cuánticos a través de las teorías gauge duales.”

Interesante, no? 🙂

Anuncios

Recordemos lo ya expuesto en este post: que en las coordenadas esferoidales prolatas (\mu, \nu, \varphi), las dos primeras (\mu, \nu) provienen de las coordenadas elípticas, donde \mu \in ]0,+\infty[ y \nu \in ]0,2\pi[, mientras que la última \varphi \in ]0,2\pi[ proviene de rotarlas alrededor del eje que une los focos.

Compactificamos la primera coordenada mediante \boxed{\mu = b \tan \frac{\pi \bar{\mu}}{2}}.

El Laplaciano y las fuentes, en estas coordenadas y con esta compactificación, utilizando una nueva función en Mathematica que nos lo calcula todo, quedan:

lap_ellComNor2

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

s1_ellComNor2

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

s21_ellComNor2

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

A1x_ellComNor2

A2x_ellComNor2

A3x_ellComNor2

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

Recordemos lo ya expuesto en este post: que en las coordenadas biesféricas (\xi, \eta, \varphi), las dos primeras (\xi, \eta) provienen de las coordenadas bipolares, donde la primera indica el ángulo entre las dos rectas que unen nuestro punto con los dos focos que necesitamos para determinar las bipolares y la segundo es el logartimo del ratio entre la longitud de estas dos rectas, mientras que la última proviene de rotarlas alrededor del eje que une los focos.

Compactificamos la segunda coordenada mediante \boxed{\eta = \frac{b \bar{\eta}}{1 - \bar{\eta}}}.

El Laplaciano, en estas coordenadas y con esta compactificación, queda:

\Delta = \frac{(\cos \xi - \mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}})^2}{a^2} \big [ \partial_{\xi \xi} + \csc \xi \frac{-1 + \cos \xi \, \mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}}}{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}} - \cos \xi} \partial_{\xi}

+\frac{(\bar{\eta} - 1)^4}{b^2} \partial_{\bar{\eta} \bar{\eta}} + \frac{(\bar{\eta} - 1)^2}{b^2} (2(\bar{\eta}-1) -\frac{b \, \mbox{\scriptsize sinh} \frac{b \bar{\eta}}{1 - \bar{\eta}}}{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}) \partial_{\bar{\eta}} + \csc^2 \xi \partial_{\varphi} \big ],

las derivadas covariantes de covectores (1-formas):

CovDer_BiSphComNor1

y las fuentes:

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

\Delta \Theta_X = 6 \pi f^{ji} \mathcal{D}_i S^*_j = 6 \pi ( \mathcal{D}_{\xi} S^*_{\xi} + \mathcal{D}_{\bar{\eta}} S^*_{\bar{\eta}} + \mathcal{D}_{\varphi} S^*_{\varphi} ) =

s1_biSphComNor1

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

Pasando la derivada contravariante a covariante mediante la métrica, queda:

\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X.

Definimos ahora

S_X^i := 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X,

de manera que:

S_X^{\xi} = 8 \pi f^{\xi j} S^*_j - \frac{1}{3} f^{\xi k}\mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\xi} - \frac{1}{3} \mathcal{D}_{\xi} \Theta_X =

= 8 \pi S^*_{\xi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \partial_{\xi} \Theta_X

S_X^{\bar{\eta}} = 8 \pi f^{\bar{\eta} j} S^*_j - \frac{1}{3} f^{\bar{\eta} k} \mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\bar{\eta}} - \frac{1}{3} \mathcal{D}_{\bar{\eta}} \Theta_X =

= 8 \pi S^*_{\bar{\eta}} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \frac{(\bar{\eta} - 1)^2}{b} \partial_{\bar{\eta}} \Theta_X

S_X^{\varphi} = 8 \pi f^{\varphi j} S^*_j - \frac{1}{3} f^{\varphi k} \mathcal{D}^{k} \Theta_X = 8 \pi S^*_{\varphi} - \frac{1}{3} \mathcal{D}_{\varphi} \Theta_X =

= 8 \pi S^*_{\varphi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \csc \xi \partial_{\varphi} \Theta_X

En este punto tenemos que el vector

(S_X^{\xi}(\xi,\bar{\eta},\varphi),S_X^{\bar{\eta}}(\xi,\bar{\eta},\varphi),S_X^{\varphi}(\xi,\bar{\eta},\varphi))

expresado en la base que resulta de normalizar la base coordenada \{ \partial_{\xi}, \partial_{\bar{\eta}}, \partial_{\varphi} \}. Lo que hacemos ahora es expresar este vector en la nueva base \{ \partial_x, \partial_y, \partial_z \}, de manera que obtenemos

(S_X^{x}(\xi,\bar{\eta},\varphi),S_X^{y}(\xi,\bar{\eta},\varphi),S_X^{z}(\xi,\bar{\eta},\varphi)).

y como es esta base las ecuaciones están desacopladas y \Theta_X es un campo escalar, resolvemos independientemente:

\Delta X^{x} = S_X^{x},

\Delta X^{y} = S_X^{y},

\Delta X^{z} = S_X^{z}.

Finalmente, con el cambio de base inverso, calculamos a partir de (X^{x},X^{y},X^{z}) el vector (X^{\xi},X^{\bar{\eta}},X^\varphi) .

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

Necesitamos ahora la derivada covariante de un vector (hasta ahora habían coincidido las derivadas covariantes de vectores y covectores, pero en este caso no):

CovDer_BiSphComNor1_vec

volvemos a pasar las derivadas contravariantes a covariantes:

\hat{A}^{ij} = f^{im} \mathcal{D}_m X^j + f^{jn} \mathcal{D}_n X^i - \frac{2}{3} f^{ij} \mathcal{D}_k X^{k}

y obtenemos:

\hat{A}^{\xi \xi} = f^{\xi m} \mathcal{D}_m X^{\xi} + f^{\xi n} \mathcal{D}_n X^{\xi} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( 2 \mathcal{D}_{\xi} X^{\xi} - \mathcal{D}_{\bar{\eta}} X^{\bar{\eta}} - \mathcal{D}_{\varphi} X^{\varphi}) =

A11_biSphComNor1

\hat{A}^{\xi \bar{\eta}} = f^{\xi m} \mathcal{D}_m X^{\bar{\eta}} + f^{\bar{\eta} n} \mathcal{D}_n X^{\xi} = \mathcal{D}_{\xi} X^{\bar{\eta}} + \mathcal{D}_{\bar{\eta}} X^{\xi} =

A12_biSphComNor1

\hat{A}^{\xi \varphi} = f^{\xi m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\xi} = \mathcal{D}_{\xi} X^{\varphi} + \mathcal{D}_{\varphi} X^{\xi} =

A13_biSphComNor1

\hat{A}^{\bar{\eta} \bar{\eta}} = f^{\bar{\eta} m} \mathcal{D}_m X^{\bar{\eta}} + f^{\bar{\eta} n} \mathcal{D}_n X^{\bar{\eta}} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\xi} X^{\xi} + 2 \mathcal{D}_{\bar{\eta}} X^{\bar{\eta}} - \mathcal{D}_{\varphi} X^{\varphi}) =

A22_biSphComNor1

\hat{A}^{\bar{\eta} \varphi} = f^{\bar{\eta} m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\bar{\eta}} = \mathcal{D}_{\bar{\eta}} X^{\varphi} + \mathcal{D}_{\varphi} X^{\bar{\eta}} =

A23_biSphComNor1

\hat{A}^{\varphi \varphi} = f^{\varphi m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\varphi} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\bar{r}} X^{\bar{r}} - \mathcal{D}_{\theta} X^{\theta} +2 \mathcal{D}_{\varphi} X^{\varphi}) =

A33_biSphComNor1

Las dos ecuaciones no lineales correspondientes al factor conforme \psi y al lapse \alpha, como no contienen derivadas covariantes, quedan como las teniamos:

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

Finalmente, para el shift \beta y su ecuación auxiliar tenemos:

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

que trataremos en el siguiente post.

Compactificamos la primera coordenada mediante \boxed{r = \frac{a \bar{r}}{1 - \bar{r}}}.

El Laplaciano, con esta compactificación, queda:

\Delta = \frac{(a-\bar{r})^4}{a^4} \partial_{\bar{r} \bar{r}} + \frac{2}{\bar{r}} \frac{(a-\bar{r})^4}{a^4} \partial_{\bar{r}} + \frac{(a - \bar{r})^2}{a^2 \bar{r}^2} \partial_{\theta \theta} + \frac{(a-\bar{r})^2}{a^2 \bar{r}^2} \cot \theta \partial_{\theta} + \frac{(a - \bar{r})^2}{a^2 \bar{r}^2 } \csc \theta \partial_{\varphi \varphi}

y las fuentes:

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

\Delta \Theta_X = 6 \pi f^{ji} \mathcal{D}_i S^*_j = 6 \pi ( \mathcal{D}_{\bar{r}} S^*_{\bar{r}} + \mathcal{D}_{\theta} S^*_{\theta} + \mathcal{D}_{\varphi} S^*_{\varphi} ) =

= 6 \pi \frac{1-\bar{r}}{a \bar{r}} ( (\bar{r}-\bar{r}^2) \partial_{\bar{r}} S^*_{\bar{r}} + 2 S^*_{\bar{r}} + \partial_{\theta} S^*_{\theta} + \cot \theta S^*_{\theta} + \csc \theta \partial_{\varphi} S^*_{\varphi} )

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

Pasando la derivada contravariante a covariante mediante la métrica, queda:

\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X.

Definimos ahora

S_X^i := 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X,

de manera que:

S_X^{\bar{r}} = 8 \pi f^{\bar{r} j} S^*_j - \frac{1}{3} f^{\bar{r} k}\mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\bar{r}} - \frac{1}{3} \mathcal{D}_{\bar{r}} \Theta_X = 8 \pi S^*_{\bar{r}} - \frac{(1-\bar{r})^2}{a^2} \partial_{\bar{r}} \Theta_X,

S_X^{\theta} = 8 \pi f^{\theta j} S^*_j - \frac{1}{3} f^{\theta k} \mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\theta} - \frac{1}{3} \mathcal{D}_{\theta} \Theta_X = 8 \pi S^*_{\theta} - \frac{1-\bar{r}}{a \bar{r}} \partial_{\theta} \Theta_X,

S_X^{\varphi} = 8 \pi f^{\varphi j} S^*_j - \frac{1}{3} f^{\varphi k} \mathcal{D}^{k} \Theta_X = 8 \pi S^*_{\varphi} - \frac{1}{3} \mathcal{D}_{\varphi} \Theta_X = 8 \pi S^*_{\varphi} - \frac{a-\bar{r}}{a \bar{r}} \csc \theta \partial_{\varphi} \Theta_X.

En este punto tenemos que el vector

(S_X^{\bar{r}}(\bar{r},\theta,\varphi),S_X^{\theta}(\bar{r},\theta,\varphi),S_X^{\varphi}(\bar{r},\partial_\theta,\partial_\varphi))

expresado en la base \{ \partial_{\bar{r}}, \theta, \varphi \}. Lo que hacemos ahora es expresar este vector en la nueva base \{ \partial_x, \partial_y, \partial_z \}, de manera que obtenemos

(S_X^{x}(\bar{r},\theta,\varphi),S_X^{y}(\bar{r},\theta,\varphi),S_X^{z}(\bar{r},\theta,\varphi)).

y como es esta base las ecuaciones están desacopladas y \Theta_X es un campo escalar, resolvemos independientemente:

\Delta X^{x} = S_X^{x},

\Delta X^{y} = S_X^{y},

\Delta X^{z} = S_X^{z}.

Finalmente, con el cambio de base inverso, calculamos a partir de (X^{x},X^{y},X^{z}) el vector (X^{\bar{r}},X^\theta,X^\varphi) .

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

volvemos a pasar las derivadas contravariantes a covariantes:

\hat{A}^{ij} = f^{im} \mathcal{D}_m X^j + f^{jn} \mathcal{D}_n X^i - \frac{2}{3} f^{ij} \mathcal{D}_k X^{k}

y obtenemos:

\hat{A}^{\bar{r} \bar{r}} = f^{\bar{r} m} \mathcal{D}_m X^{\bar{r}} + f^{\bar{r} n} \mathcal{D}_n X^{\bar{r}} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( 2 \mathcal{D}_{\bar{r}} X^{\bar{r}} - \mathcal{D}_{\theta} X^{\theta} - \mathcal{D}_{\varphi} X^{\varphi}) =

= \frac{2(1-\bar{r})}{3a\bar{r}} [ 2(\bar{r}-\bar{r}^2)\partial_{\bar{r}} X^{\bar{r}} - 2 X^{\bar{r}} - \partial_{\theta} X^{\theta} - \cot \theta X^{\theta} - \csc \theta \partial_{\varphi} X^{\varphi} ]

\hat{A}^{\bar{r} \theta} = f^{\bar{r} m} \mathcal{D}_m X^{\theta} + f^{\theta n} \mathcal{D}_n X^{\bar{r}} = \mathcal{D}_{\bar{r}} X^{\theta} + \mathcal{D}_{\theta} X^{\bar{r}} =

= \frac{1-\bar{r}}{a\bar{r}} [ (\bar{r}-\bar{r}^2) \partial_{\bar{r}} X^{\theta} - X^{\theta} + \partial_{\theta} X^{\bar{r}} ],

\hat{A}^{\bar{r} \varphi} = f^{\bar{r} m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\bar{r}} = \mathcal{D}_{\bar{r}} X^{\varphi} + \mathcal{D}_{\varphi} X^{\bar{r}} =

= \frac{1-\bar{r}}{a\bar{r}} [ (\bar{r}-\bar{r}^2) \partial_{\bar{r}} X^{\varphi} - X^{\varphi} + \csc \theta \partial_{\varphi} X^{\bar{r}} ],

\hat{A}^{\theta \theta} = f^{\theta m} \mathcal{D}_m X^{\theta} + f^{\theta n} \mathcal{D}_n X^{\theta} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\bar{r}} X^{\bar{r}} + 2 \mathcal{D}_{\theta} X^{\theta} - \mathcal{D}_{\varphi} X^{\varphi}) =

= \frac{2(1-\bar{r})}{3 a \bar{r}} [ -(\bar{r}-\bar{r}^2) \partial_{\bar{r}} X^{\bar{r}} + X^{\bar{r}} + 2 \partial_{\theta} X^{\theta} - \cot \theta X^{\theta} - \csc \partial_{\varphi} X^{\varphi} ]

\hat{A}^{\theta \varphi} = f^{\theta m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\theta} = \mathcal{D}_{\theta} X^{\varphi} + \mathcal{D}_{\varphi} X^{\theta} =

= \frac{1-\bar{r}}{a\bar{r}} [ \partial_{\theta} X^{\varphi} - \cot \theta X^{\varphi} + \csc \theta \partial_{\varphi} X^{\theta} ],

\hat{A}^{\varphi \varphi} = f^{\varphi m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\varphi} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\bar{r}} X^{\bar{r}} - \mathcal{D}_{\theta} X^{\theta} +2 \mathcal{D}_{\varphi} X^{\varphi}) =

= \frac{2(1-\bar{r})}{3 a \bar{r}} [ -(\bar{r} - \bar{r}^2) \partial_{\bar{r}} X^{\bar{r}} + X^{\bar{r}} - \partial_{\theta} X^{\theta} + 2 \cot \theta X^{\theta} + 2 \csc \theta \partial_{\varphi} T^{\varphi} ]

Las dos ecuaciones no lineales correspondientes al factor conforme \psi y al lapse \alpha, como no contienen derivadas covariantes, quedan como las teniamos:

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

Finalmente, para el shift \beta y su ecuación auxiliar tenemos:

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

que lo tratamos en este post.

Las ecuaciones de la aproximación CFC de las ecuaciones de Einstein en el formalismo 3+1 expresadas de forma covariante son:

\Delta X^i = 8 \pi f^{ij} S_j^* - \frac{1}{3} \mathcal{D}^i (\mathcal{D}_j X^j),

\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}}{8} \psi^{-7},

\Delta (\alpha \psi) = 2 \pi \psi^{-2} (E^* + 2S^*) (\alpha \psi) + 7 \psi^{-8} \frac{f_{il} f_{im} \hat{A}^{lm} \hat{A}^{ij}}{8} (\alpha \psi),

\Delta \beta^i = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij}) - \frac{1}{3} \mathcal{D}^i (\mathcal{D}_j \beta^j),

donde \hat{A}^{ij} \approx (LX)^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}.

En coordenadas cartesianas, (x,y,z), tenemos:

(\partial_{xx} + \partial_{yy} + \partial_{zz}) X^x = 8 \pi S_x^* - \frac{1}{3} \partial_{xx} X^x,

(\partial_{xx} + \partial_{yy} + \partial_{zz}) X^y = 8 \pi S_y^* - \frac{1}{3} \partial_{yy} X^y,

(\partial_{xx} + \partial_{yy} + \partial_{zz}) X^z = 8 \pi S_z^* - \frac{1}{3} \partial_{zz} X^z,

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \psi = -2 \pi E^* \psi^{-1} - \frac{As}{8} \psi^{-7},

(\partial_{xx} + \partial_{yy} + \partial_{zz}) (\alpha \psi) = 2 \pi \psi^{-2} (E^* + 2S^*) (\alpha \psi) + 7 \psi^{-8} \frac{As}{8} (\alpha \psi),

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \beta^x = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{xj}) - \frac{1}{3} \mathcal{D}^x (\mathcal{D}_j \beta^j),

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \beta^y = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{yj}) - \frac{1}{3} \mathcal{D}^y (\mathcal{D}_j \beta^j),

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \beta^z = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{zj}) - \frac{1}{3} \mathcal{D}^z (\mathcal{D}_j \beta^j),

con

\hat{A}^{xx} = \partial_x X^x + \partial_x X^x - \frac{2}{3} \partial_k X^k f^{xx},

\hat{A}^{xy} = \partial_x X^y + \partial_y X^x,

\hat{A}^{xz} = \partial_x X^z + \partial_z X^x,

\hat{A}^{yy} = \partial_y X^y + \partial_y X^y - \frac{2}{3} \partial_k X^k f^{yy},

\hat{A}^{yz} = \partial_y X^z + \partial_z X^y,

\hat{A}^{zz} = \partial_z X^z + \partial_z X^z - \frac{2}{3} \partial_k X^k f^{zz},

y

As:=(A^{xx})^2+(A^{xy})^2+(A^{xz})^2+(A^{yy})^2+(A^{yz})^2+(A^{zz})^2.

En coordenadas esféricas (r,\theta,\varphi), las ecuaciones quedan:

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) X^r =

= 8 \pi f^{r j} S_j^* - \frac{1}{3} \mathcal{D}^r (\mathcal{D}_j X^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) X^\theta =

= 8 \pi f^{\theta j} S_j^* - \frac{1}{3} \mathcal{D}^\theta (\mathcal{D}_j X^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) X^\varphi =

= 8 \pi f^{\varphi j} S_j^* - \frac{1}{3} \mathcal{D}^\varphi (\mathcal{D}_j X^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \psi = -2 \pi E^* \psi^{-1} - \frac{As}{8} \psi^{-7},

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) (\alpha \psi) =

= 2 \pi \psi^{-2} (E^* + 2S^*) (\alpha \psi) + 7 \psi^{-8} \frac{As}{8} (\alpha \psi),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \beta^r =

= \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{r j}) - \frac{1}{3} \mathcal{D}^r (\mathcal{D}_j \beta^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \beta^\theta =

= \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{\theta j}) - \frac{1}{3} \mathcal{D}^\theta (\mathcal{D}_j \beta^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \beta^\varphi =

\mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{\varphi j}) - \frac{1}{3} \mathcal{D}^\varphi (\mathcal{D}_j \beta^j),

con:

\hat{A}^{rr} = \mathcal{D}^r X^r + \mathcal{D}^r X^r - \frac{2}{3} \mathcal{D}_k X^k f^{rr},

\hat{A}^{r\theta} = \mathcal{D}^r X^\theta + \mathcal{D}^\theta X^r,

\hat{A}^{r\varphi} = \mathcal{D}^r X^\varphi + \mathcal{D}^\varphi X^r,

\hat{A}^{\theta\theta} = \mathcal{D}^\theta X^\theta + \mathcal{D}^\theta X^\theta - \frac{2}{3} \mathcal{D}_k X^k f^{\theta\theta},

\hat{A}^{\theta\varphi} = \mathcal{D}^\theta X^\varphi + \mathcal{D}^\varphi X^\theta,

\hat{A}^{\varphi\varphi} = \mathcal{D}^\varphi X^\varphi + \mathcal{D}^\varphi X^\varphi - \frac{2}{3} \mathcal{D}_k X^k f^{\varphi\varphi},

y

As:=(A^{rr})^2+(A^{r\theta})^2+(A^{r\varphi})^2+(A^{\theta\theta})^2+(A^{\theta\varphi})^2+(A^{\varphi\varphi})^2.

Aunque lo había oido muchas veces, creo que acabo de entender la idea práctica de lo que significa tener una ecuación escrita en formulación covariante: es una expresión que será válida en cualquier sistema de referencia.

Tradicionalmente hay dos maneras de enfrentarse a los tensores: la de los físicos, mediante índices, y la de los matemáticos, sin índices. Como en todo, cada una tiene sus ventajas y sus inconvenientes. En la primera tenemos definidos unos sistemas de referencia, ya que los necesitamos para hacer física (las medidas de los experimentos estarán hechas en referencia a algo) y tiene una ventaja obvia a la hora de realizar cálculos prácticos. En la segunda, estamos mas preocupados por demostrar cosas, y nos interesa encontrar que hay de verdad en todo aquello independientemente del sistema en el que esté expresado.

Supongamos la siguiente ecuación covariante que me aparece en la aproximación CFC:

\Delta \Theta_X = 6 \pi \mathcal{D}^i S_i^*.

Esta es, por ser covariante, válida siempre, la expresemos en la referencia que queramos. Por tanto, lo podemos hacer en la base coordenada cartesiana \{ \partial_x, \partial_y, \partial_z\}:

(\partial_{xx} + \partial_{yy} + \partial_{zz} ) \Theta_X = 6 \pi (\partial_x S_x^* + \partial_y S_y^* +\partial_z S_z^*),

o en la base coordenada esférica \{ \partial_r, \partial_\theta, \partial_\varphi \}:

(\partial_{rr} + \frac{1}{r} \partial_{r} + \frac{1}{r^2} \partial_{\theta \theta} + \frac{\cot \theta}{r^2} \partial_{\theta} + \frac{\csc^2 \theta}{r^2} \partial_{\varphi \varphi}) \Theta_X =

6 \pi (\mathcal{D}_r (S^*)^r + \mathcal{D}_\theta (S^*)^\theta + \mathcal{D}_\varphi (S^*)^\varphi),

donde:

\mathcal{D}_r (S^*)^r = \partial_r (S^*)^r,

\mathcal{D}_\theta (S^*)^\theta = \frac{1}{r} \partial_\theta (S^*)^\theta + \frac{1}{r} (S^*)^r y

\mathcal{D}_\varphi (S^*)^\varphi = \frac{\csc \theta}{r} \partial_\varphi (S^*)^\varphi + \frac{\cot \theta}{r} (S^*)^\theta + \frac{1}{r} (S^*)^r.

En la geometría de Riemann, podemos calcular una connexión \nabla a partir de su tensor métrico (la conexión de Levi-Civita). Esta derivación covariante es libre de torsión, por lo que el tensor de Ricci R_{\alpha \beta} debe ser simétrico. Hoy el profesor Juan Antonio Morales me ha introducido en la geometría de Riemann-Cartan, donde el tensor de Ricci puede ser asimétrico gracias a la existencia de un campo de torsión afín sobre la variedad. Lo que tenemos entonces es una conexión de Cartan.

Parece ser que esto permite el intercambio, para la conservación total del momento, entre espín y momento angular orbital.

Básicamente, podemos pensar la geometría diferencial desde el punto de vista de las bases coordenadas (naturales u holonómicas), donde los conmutadores (las derivadas de Lie \mathcal{L}_X Y := [X,Y] entre los campos coordenados, que intuitivamente miden la diferencia entre el arrastre del segundo campo mediante el primero respecto de su valor real en el punto final) son nulos, o pensarla desde el punto de vista de bases no coordenadas formadas por n campos vectoriales cualesquiera, si estamos en dimensión n, donde los corchetes de Lie ahora no son nulos.

Todo esto enlaza con este post y la manera de calcular los coeficientes de la conexión \gamma^{i}_{\phantom{i}jk}, introducidos en este post, para una base dada.

La fórmula para los símbolos de la conexión de Levi-Civita en una base \{e_i\} cualquiera es:

\gamma^{l}_{\phantom{l}jk} = \frac{1}{2} g^{lm} (e_k(g_{mj}) + e_j(g_{mk}) - e_m(g_{jk}) + c_{mjk} + c_{mkj} - c_{jkm}),

donde:

c_{jkm} = g_{mi}c_{jk}^{\phantom{jk}i} y [e_j,e_k] = c_{jk}^{\phantom{jk}i} e_i.

En una base coordenada \{ \partial_i \} tenemos que c_{mjk} = c_{mkj} = c_{jkm} = 0, por lo que:

\Gamma^{l}_{\phantom{l}jk} = \frac{1}{2} g^{lm} (\partial_k(g_{mj}) + \partial_j(g_{mk}) - \partial_m(g_{jk})),

mientras que en una base ortonormal \{ \hat{e}_i\} tenemos que \hat{e}_i(g_{jk}) = 0 y, por tanto:

\hat{\gamma}^{l}_{\phantom{l}jk} = \frac{1}{2} \eta^{lm} (c_{mjk} + c_{mkj} - c_{jkm}).

Como \Delta u = f \leftrightarrow u = \Delta^{-1} f entonces \mathcal{M}(u) = \mathcal{M}(\Delta^{-1} f) y

\mathcal{M}(\Delta^{-1}f) = \frac{1}{r} M(f) + \frac{1}{r^2}n_i D^i(f) + \frac{3}{2} \frac{1}{r^3} n_{\langle i} n_{j \rangle} Q^{ij}(f) + O(\frac{1}{r^4}) +

+ \Delta_0^{-1} \mathcal{M}(f)

con

M(f) = - \frac{1}{4 \pi} \int f,

D^i(f) = - \frac{1}{4 \pi} \int x^i f,

Q^{ij}(f) = - \frac{1}{4 \pi} \int x^i x^j f

y \mathcal{M}(f) = 0 si f es de soporte compacto.

 1.- \boxed{\Delta \Theta_X = \frac{3}{4} 8 \pi \mathcal{D}^i S_i^*} donde \Theta_X := \mathcal{D}_j X^j

En este caso, f_{\Theta_X} := \frac{3}{4} 8 \pi \mathcal{D}^i S_i^* y, por tanto, \mathcal{M}(f_{\Theta_X})=0. De esta manera, tenemos:

M(f_{\Theta_X}) =,

D^i(f_{\Theta_X}) = - \frac{1}{4 \pi} \int x^i \frac{3}{4} 8 \pi \mathcal{D}^i S_i^* = -\frac{3}{2} (\int \mathcal{D}^j(x^i S_j^*) d^3x' - \int S_j^* \mathcal{D}^j x^i d^3x'),

Q^{ij}(f_{\Theta_X}) = - \frac{1}{4 \pi} \int x^i x^j \frac{3}{4} 8 \pi \mathcal{D}^i S_i^*

\mathcal{M}(\Delta^{-1}f_{\Theta_X}) = + O()

2.- \boxed{\Delta X^i = 8 \pi f^{ij} S_j^* - \frac{1}{3} \mathcal{D}^i \Theta_X}

Ahora hacemos f_{X^i} := 8 \pi f^{ij} S_j^* - \frac{1}{3} \mathcal{D}^i \Theta_X

M(f_{X^i}) = - \frac{1}{4 \pi} \int 8 \pi f^{ij} S_j^* - \frac{1}{3} \mathcal{D}^i \Theta_X,

D^i(f_{X^i}) = - \frac{1}{4 \pi} \int x^i (8 \pi f^{ij} S_j^* - \frac{1}{3} \mathcal{D}^i \Theta_X),

Q^{ij}(f_{X^i}) = - \frac{1}{4 \pi} \int x^i x^j (8 \pi f^{ij} S_j^* - \frac{1}{3} \mathcal{D}^i \Theta_X)

\mathcal{M}(\Delta^{-1}f_{X^i}) = + O()

3.- \boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8} ( f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7}}

En esta ocasión, f_\psi := -2 \pi E^* \psi^{-1} - \frac{1}{8} ( f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7}

M(f_\psi) = - \frac{1}{4 \pi} \int -2 \pi E^* \psi^{-1} - \frac{1}{8} ( f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7},

D^i(f_\psi) = - \frac{1}{4 \pi} \int x^i (-2 \pi E^* \psi^{-1} - \frac{1}{8} ( f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7}),

Q^{ij}(f_\psi) = - \frac{1}{4 \pi} \int x^i x^j (-2 \pi E^* \psi^{-1} - \frac{1}{8} ( f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7})

\mathcal{M}(\Delta^{-1}f_\psi) = + O()

4.- \boxed{ \Delta (\alpha \psi) = \big( 2 \pi (E^* + 2S^*) \psi^{-2} + \frac{7}{8} (f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij} ) \psi^{-8} \big) (\alpha \psi) }

Definimos f_{\alpha \psi}:=\big( 2 \pi (E^* + 2S^*) \psi^{-2} + \frac{7}{8} (f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij} ) \psi^{-8} \big) (\alpha \psi)

M(f_{\alpha \psi}) = - \frac{1}{4 \pi} \int \big( 2 \pi (E^* + 2S^*) \psi^{-2} + \frac{7}{8} (f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij} ) \psi^{-8} \big) (\alpha \psi),

D^i(f_{\alpha \psi}) = - \frac{1}{4 \pi} \int x^i (\big( 2 \pi (E^* + 2S^*) \psi^{-2} + \frac{7}{8} (f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij} ) \psi^{-8} \big) (\alpha \psi)),

Q^{ij}(f_{\alpha \psi}) = - \frac{1}{4 \pi} \int x^i x^j (\big( 2 \pi (E^* + 2S^*) \psi^{-2} + \frac{7}{8} (f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij} ) \psi^{-8} \big) (\alpha \psi))

\mathcal{M}(\Delta^{-1} f_{\alpha \psi}) = + O()

5.- \boxed{\Delta \Theta_\beta = \frac{3}{4}\mathcal{D}^i (\mathcal{D}_j(2\alpha \psi^{-6}\hat{A}^{ij})) } con \Theta_\beta := \mathcal{D}_i \beta^i

Para esta ecuación, f_{\Theta_\beta}:=\frac{3}{4}\mathcal{D}^i (\mathcal{D}_j(2\alpha \psi^{-6}\hat{A}^{ij}))

M(f_{\Theta_\beta}) = - \frac{1}{4 \pi} \int \frac{3}{4}\mathcal{D}^i (\mathcal{D}_j(2\alpha \psi^{-6}\hat{A}^{ij})),

D^i(f_{\Theta_\beta}) = - \frac{1}{4 \pi} \int x^i \frac{3}{4}\mathcal{D}^i (\mathcal{D}_j(2\alpha \psi^{-6}\hat{A}^{ij})),

Q^{ij}(f_{\Theta_\beta}) = - \frac{1}{4 \pi} \int x^i x^j \frac{3}{4}\mathcal{D}^i (\mathcal{D}_j(2\alpha \psi^{-6}\hat{A}^{ij}))

\mathcal{M}(\Delta^{-1}f_{\Theta_\beta}) = + O()

6.- \boxed{\Delta \beta^i = \mathcal{D}_j(2\alpha\psi^{-6}\hat{A}^{ij})-\frac{1}{3}\mathcal{D}^i \Theta_\beta}

Finalmente, tenemos f_{\beta^i}:=\mathcal{D}_j(2\alpha\psi^{-6}\hat{A}^{ij})-\frac{1}{3}\mathcal{D}^i \Theta_\beta

M(f_{\beta^i}) = - \frac{1}{4 \pi} \int \mathcal{D}_j(2\alpha\psi^{-6}\hat{A}^{ij})-\frac{1}{3}\mathcal{D}^i \Theta_\beta,

D^i(f_{\beta^i}) = - \frac{1}{4 \pi} \int x^i (\mathcal{D}_j(2\alpha\psi^{-6}\hat{A}^{ij})-\frac{1}{3}\mathcal{D}^i \Theta_\beta),

Q^{ij}(f_{\beta^i}) = - \frac{1}{4 \pi} \int x^i x^j (\mathcal{D}_j(2\alpha\psi^{-6}\hat{A}^{ij})-\frac{1}{3}\mathcal{D}^i \Theta_\beta)

\mathcal{M}(\Delta^{-1}f_{\beta^i}) = + O()

El software Chombo, del Berkeley Lab, combina los métodos en diferencias finitas con las mallas adaptativas (AMR) para resolver, entre otras, PDEs elípticas.

Las siguientes imágenes, en 2D y 3D, se han obtenido a partir de su AMRPoisson:

schSolSouschSol

Definimos a los kernels como funciones del tipo:

W_{ab}=W(\boldsymbol{r}_a - \boldsymbol{r}_b,h),

donde a es la partícula en la que está centrada la función y b es una partícula dentro del soporte compacto de la función kernel, controlado éste último por h, la smoothing length (longitud de suavizado).

En este post básicamente pretendo aclarar lo que significa \nabla_a W_{ab} cuando, por ejemplo, tenemos definido el kernel como:

W(q) = \alpha_D \exp (-q^2) con 0 \leq q \leq 2.

Para empezar, \alpha_D es una constante de dimensionalidad, por lo que la fórmula está escrita de manera compacta y sirve para cualquier dimensión. Además, tenemos que q = \frac{r}{h}, siendo r la distancia ente las partículas, por lo que:

r = |\boldsymbol{r}_a - \boldsymbol{r}_b| =^{(3D)} \sqrt{(x_a-x_b)^2 + (y_a-y_b)^2 + (z_a-z_b)^2}.

Si fijamos la posición de la partícula a, la función que nos da la distancia de esta a cualquier punto dentro del soporte compacto es:

r_a (\boldsymbol{r}) = |\boldsymbol{r}_a-\boldsymbol{r}| =^{(3D)} \sqrt{(x_a-x)^2 + (y_a-y)^2 + (z_a-z)^2},

siendo q_a lo mismo añadiendo el factor h.

Por lo tanto, en este caso tenemos, en tres dimensiones y donde b es una partícula en una posición arbitraria (x,y,z):

\nabla_a W_{ab}(q) =^{(3D)} (\partial_x W_{ab}(q_a), \partial_y W_{ab}(q_a), \partial_z W_{ab}(q_a)) =

= \alpha_D \exp(-q^2) (-2q) (\partial_x (q_a), \partial_y (q_a), \partial_z (q_a)) = \alpha_D \exp(-q^2) (-2q) \nabla_a q_a

donde:

\nabla_a q_a = \frac{-1}{h r_a} (x_a-x,y_a-y,z_a-z).

De la misma manera, si tenemos:

W(q) = \alpha_D \begin{cases} 1-\frac{3}{2} q^2 + \frac{3}{4} q^3, 0 \leq q < 1\\ \frac{1}{4} (2-q)^3, 1 \leq q < 2 \\ 0, q \geq 2 \end{cases}

entonces:

\nabla_a W_{ab}(q) = \alpha_D \begin{cases} (-3q + \frac{9}{4}q^2) \nabla_a q_a, 0 \leq q < 1 \\ -\frac{3}{4} (2-q)^2 \nabla_a q_a, 1 \leq q < 2 \\ 0, q \geq 2 \end{cases}

Así pues:

\nabla W(q) = \frac{d}{dq} W(q) \nabla q.

 

A la hora de resolver las diferentes ecuaciones elípticas CFC tenemos dos posibilidades para fijar las condiciones en la frontera, cada una con sus mas y sus menos.

La primera consiste en hacer un desarrollo multipolar de los terminos fuente en armónicos esféricos, de manera que cuantos mas términos consideremos mas cerca podremos colocar la frontera.

La segunda consiste en compactificar el dominio, lo que nos permite reducir todo el universo a un cubo unidad y considerar Minkowski en su frontera, puesto que ésta corresponde a infinito.

En la discretización que hicimos teníamos dos sistemas acoplados, uno para las X^i y otro para las \beta^i. Procedemos ahora a desacoplarlos.

Para empezar, tomamos la divergencia (plana) del sistema:

\Delta X^i = 8 \pi f^{ij} S^*_j - \frac{1}{3}\mathcal{D}^i \mathcal{D}_j X^j

y, teniendo en cuenta que \mathcal{D} conmuta con \Delta (métrica plana), tenemos:

\Delta (\mathcal{D}_i X^i) = 8 \pi \mathcal{D}^j S^*_j - \frac{1}{3} \Delta (\mathcal{D}_j X^j),

por lo que:

\Delta (\mathcal{D}_i X^i) = \frac{3}{4} 8 \pi \mathcal{D}^j S^*_j.

De esta manera, si definimos \Theta_X := \mathcal{D}_i X^i, nos queda:

\Delta \Theta_X = \frac{3}{4} 8 \pi \mathcal{D}^j S^*_j = 6 \pi (\partial_x S^*_x + \partial_y S^*_y +\partial_z S^*_z ),

que discretizado queda:

\frac{(\Theta_X)_{i-1,j,k}-2(\Theta_X)_{i,j,k}+(\Theta_X)_{i+1,j,k}}{h_x^2} +

\frac{(\Theta_X)_{i,j-1,k}-2(\Theta_X)_{i,j,k}+(\Theta_X)_{i,j+1,k}}{h_y^2} +

\frac{(\Theta_X)_{i,j,k-1}-2(\Theta_X)_{i,j,k}+(\Theta_X)_{i,j,k+1}}{h_z^2} =

= 6 \pi (\partial_x S^*_x + \partial_y S^*_y +\partial_z S^*_z )_{i,j,k} ,

donde inicialmente:

(S^*_a)_{i,j,k} = (\psi^6)_{i,j,k}\rho_{i,j,k}h_{i,j,k}w^2_{i,j,k}(v_a)_{i,j,k},

(\partial_x S^*_x + \partial_y S^*_y +\partial_z S^*_z )_{i,j,k} =

\frac{(S^*_x)_{i+1,j,k}-(S^*_x)_{i-1,j,k}}{2h_x} + \frac{(S^*_x)_{i,j+1,k}-(S^*_x)_{i,j-1,k}}{2h_y} + \frac{(S^*_x)_{i,j,k+1}-(S^*_x)_{i,j,k-1}}{2h_z}

y que es lineal.

El primer sistema acoplado de ecuaciones quedaría ahora:

\partial_{xx} X^x + \partial_{yy} X^x + \partial_{zz} X^x = 8 \pi S^*_x - \frac{1}{3} \partial_x \Theta_X \approx

\approx \frac{X^x_{i-1,j,k}-2X^x_{i,j,k}+X^x_{i+1,j,k}}{h_x^2} + \frac{X^x_{i,j-1,k}-2X^x_{i,j,k}+X^x_{i,j+1,k}}{h_y^2} + \frac{X^x_{i,j,k-1}-2X^x_{i,j,k}+X^x_{i,j,k+1}}{h_z^2} =

= 8 \pi (S^*_x)_{i,j,k} - \frac{1}{3} (\partial_x \Theta_X)_{i,j,k},

¡que vuelve a ser lineal!

Continuamos con:

\partial_{xx} X^y + \partial_{yy} X^y + \partial_{zz} X^y = 8 \pi S^*_y - \frac{1}{3} \partial_y \Theta_X \approx

\approx \frac{X^y_{i-1,j,k}-2X^y_{i,j,k}+X^y_{i+1,j,k}}{h_x^2} + \frac{X^y_{i,j-1,k}-2X^y_{i,j,k}+X^y_{i,j+1,k}}{h_y^2} + \frac{X^y_{i,j,k-1}-2X^y_{i,j,k}+X^y_{i,j,k+1}}{h_z^2} =

= 8 \pi (S^*_y)_{i,j,k} - \frac{1}{3} (\partial_y \Theta_X)_{i,j,k}

y, finalmente:

\partial_{xx} X^z + \partial_{yy} X^z + \partial_{zz} X^z = 8 \pi S^*_z - \frac{1}{3} \partial_z \Theta_X \approx

\approx \frac{X^z_{i-1,j,k}-2X^z_{i,j,k}+X^z_{i+1,j,k}}{h_x^2} + \frac{X^z_{i,j-1,k}-2X^z_{i,j,k}+X^z_{i,j+1,k}}{h_y^2} + \frac{X^z_{i,j,k-1}-2X^z_{i,j,k}+X^z_{i,j,k+1}}{h_z^2} =

= 8 \pi (S^*_z)_{i,j,k} - \frac{1}{3} (\partial_z \Theta_X)_{i,j,k},

donde calculamos al principio:

(\partial_x \Theta_X)_{i,j,k} = \frac{(\Theta_X)_{i+1,j,k}-(\Theta_X)_{i-1,j,k}}{2h_x}

(\partial_y \Theta_X)_{i,j,k} = \frac{(\Theta_X)_{i,j+1,k}-(\Theta_X)_{i,j-1,k}}{2h_y}

(\partial_z \Theta_X)_{i,j,k} = \frac{(\Theta_X)_{i,j,k+1} - (\Theta_X)_{i,j,k-1}}{2h_z}

A continuación, discretizamos las siguientes ecuaciones:

\hat{A}^{xx} = 2 \partial_x X^x - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx \frac{2}{3}\frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -\frac{1}{3} \frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} - \frac{1}{3} \frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = \hat{A}^{xx}_{i,j,k},

\hat{A}^{xy} = \hat{A}^{yx}= \partial_x X^y + \partial_y X^x \approx

\approx \frac{X^y_{i+1,j,k}-X^y_{i-1,j,k}}{2h_x} + \frac{X^x_{i,j+1,k}-X^x_{i,j-1,k}}{2h_y} = \hat{A}^{xy}_{i,j,k} = \hat{A}^{yx}_{i,j,k},

\hat{A}^{xz} = \hat{A}^{zx} = \partial_x X^z + \partial_z X^x \approx

\approx \frac{X^z_{i+1,j,k}-X^z_{i-1,j,k}}{2h_x} + \frac{X^x_{i,j,k+1}-X^x_{i,j,k-1}}{2h_z} = \hat{A}^{xz}_{i,j,k} = \hat{A}^{zx}_{i,j,k},

\hat{A}^{yy} = 2 \partial_y X^y - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx -\frac{1}{3}\frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} +\frac{2}{3} \frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} - \frac{1}{3} \frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = \hat{A}^{yy}_{i,j,k},

\hat{A}^{yz} = \hat{A}^{zy} = \partial_y X^z + \partial_z X^y \approx

\approx \frac{X^z_{i,j+1,k}-X^z_{i,j-1,k}}{2h_y} + \frac{X^y_{i,j,k+1}-X^y_{i,j,k-1}}{2h_z} = \hat{A}^{yz}_{i,j,k} = \hat{A}^{zy}_{i,j,k},

\hat{A}^{zz} = 2 \partial_z X^z - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx -\frac{1}{3}\frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -\frac{1}{3} \frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} + \frac{2}{3} \frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = \hat{A}^{zz}_{i,j,k}.

Por tanto, la siguiente ecuación:

\Delta \psi = -2 \pi \psi^{-1} E^* - \psi^{-7} \frac{(\hat{A}^{xx})^2+(\hat{A}^{yy})^2+(\hat{A}^{zz})^2+2(\hat{A}^{xy})^2+2(\hat{A}^{xz})^2+2(\hat{A}^{yz})^2}{8}

queda:

\approx \frac{\psi_{i-1,j,k}-2\psi_{i,j,k}+\psi_{i+1,j,k}}{h_x^2} + \frac{\psi_{i,j-1,k}-2\psi_{i,j,k}+\psi_{i,j+1,k}}{h_y^2} + \frac{\psi_{i,j,k-1}-2\psi_{i,j,k}+\psi_{i,j,k+1}}{h_z^2} =

=-2 \pi \psi^{-1}_{i,j,k} E^*_{i,j,k} -

- \frac{\psi^{-7}_{i,j,k}}{8} ( (\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2 ) ,

con:

\partial_{\psi_{i,j,k}} F(\psi_{i,j,k}) = -2 ( \frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2} ) -2 \pi \psi_{i,j,k}^{-2} E^*_{i,j,k} -

- \frac{7}{8} \psi^{-8}_{i,j,k} ( (\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2 ),

donde:

E^*_{i,j,k} = \psi^{6}_{i,j,k} (D_{i,j,k}+\tau_{i,j,k})

y la ecuación:

\Delta (\alpha\psi) = (\alpha \psi) (2 \pi \psi^{-2} (E^*+2S^*) +

+ \frac{7}{8} \psi^{-8} ((\hat{A}^{xx})^2+(\hat{A}^{yy})^2+(\hat{A}^{zz})^2+2(\hat{A}^{xy})^2+2(\hat{A}^{xz})^2+2(\hat{A}^{yz})^2) )

como:

\approx \frac{(\alpha\psi)_{i-1,j,k} - 2(\alpha\psi)_{i,j,k}+(\alpha\psi)_{i+1,j,k}}{h_x^2} +

+ \frac{(\alpha\psi)_{i,j-1,k}-2(\alpha\psi)_{i,j,k}+(\alpha\psi)_{i,j+1,k}}{h_y^2} +

+ \frac{(\alpha\psi)_{i,j,k-1}-2(\alpha\psi)_{i,j,k}+(\alpha\psi)_{i,j,k+1}}{h_z^2} =

= (\alpha \psi)_{i,j,k} (2 \pi \psi^{-2}_{i,j,k} (E^*_{i,j,k}+2S^*_{i,j,k}) +

+ \frac{7}{8} \psi^{-8}_{i,j,k} ((\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2) ),

donde:

\partial_{(\alpha \psi)_{i,j,k}} F((\alpha \psi)_{i,j,k}) = -2 ( \frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2} ) - 2 \pi \psi^{-2}_{i,j,k} (E^*_{i,j,k}+2S^*_{i,j,k}) +

- \frac{7}{8} \psi^{-8}_{i,j,k} ((\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2) )

con:

S^*_{i,j,k} = \psi^6_{i,j,k}(\rho_{i,j,k}h_{i,j,k}(w^2_{i,j,k}-1) + 3 p_{i,j,k}).

Finalmente, tenemos el otro sistema acoplado:

\Delta \beta^i = \mathcal{D}_j(2 \alpha \psi^{-6} \hat{A}^{ij}) - \frac{1}{3} \mathcal{D}^i(\mathcal{D}_j \beta^j),

con el que procedemos de igual manera que con las X^i:

\Delta(\mathcal{D}_i \beta^i) = \mathcal{D}_i (\mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij})) - \frac{1}{3} \Delta (\mathcal{D}_i \beta^i),

de manera que:

\Delta \Theta_\beta = \frac{3}{4} \mathcal{D}^i (\mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij})) =

\frac{3}{2}(\partial_{xx}(\alpha \psi^{-6} \hat{A}^{xx}) + \partial_{yy}(\alpha \psi^{-6} \hat{A}^{yy}) + \partial_{zz}(\alpha \psi^{-6} \hat{A}^{zz}),

con:

\Theta_\beta := \mathcal{D}_i \beta^i,

que discretizada queda:

\frac{(\Theta_\beta)_{i-1,j,k}-2(\Theta_\beta)_{i,j,k}+(\Theta_\beta)_{i+1,j,k}}{h_x^2} +

\frac{(\Theta_\beta)_{i,j-1,k}-2(\Theta_\beta)_{i,j,k}+(\Theta_\beta)_{i,j+1,k}}{h_y^2} +

\frac{(\Theta_\beta)_{i,j,k-1}-2(\Theta_\beta)_{i,j,k}+(\Theta_\beta)_{i,j,k+1}}{h_z^2} =

\frac{3}{2}((\partial_{xx}(\alpha \psi^{-6} \hat{A}^{xx}))_{i,j,k} + (\partial_{yy}(\alpha \psi^{-6} \hat{A}^{yy}))_{i,j,k} + (\partial_{zz}(\alpha \psi^{-6} \hat{A}^{zz})_{i,j,k}),

De esta manera, tenemos:

\Delta \beta^x = \partial_x (2 \alpha \psi^{-6} \hat{A}^{xx}) + \partial_y (2 \alpha \psi^{-6} \hat{A}^{xy}) + \partial_z (2 \alpha \psi^{-6} \hat{A}^{xz}) - \frac{1}{3} \partial_x \Theta_\beta \approx

\approx \frac{\beta^x_{i-1,j,k}-2\beta^x_{i,j,k}+\beta^x_{i+1,j,k}}{h_x^2} + \frac{\beta^x_{i,j-1,k}-2\beta^x_{i,j,k}+\beta^x_{i,j+1,k}}{h_y^2} + \frac{\beta^x_{i,j,k-1}-2\beta^x_{i,j,k}+\beta^x_{i,j,k+1}}{h_z^2} =

= (\partial_x (2 \alpha \psi^{-6} \hat{A}^{xx}))_{i,j,k} + (\partial_y (2 \alpha \psi^{-6} \hat{A}^{xy}))_{i,j,k} + (\partial_z (2 \alpha \psi^{-6} \hat{A}^{xz}) )_{i,j,k} -

- \frac{1}{3} (\partial_x \Theta_\beta)_{i,j,k}.

De la misma manera:

\Delta \beta^y = \partial_x (2 \alpha \psi^{-6} \hat{A}^{yx}) + \partial_y (2 \alpha \psi^{-6} \hat{A}^{yy}) + \partial_z (2 \alpha \psi^{-6} \hat{A}^{yz}) - \frac{1}{3} \partial_y \Theta_\beta \approx

\approx \frac{\beta^y_{i-1,j,k}-2\beta^y_{i,j,k}+\beta^y_{i+1,j,k}}{h_x^2} + \frac{\beta^y_{i,j-1,k}-2\beta^y_{i,j,k}+\beta^y_{i,j+1,k}}{h_y^2} + \frac{\beta^y_{i,j,k-1}-2\beta^y_{i,j,k}+\beta^y_{i,j,k+1}}{h_z^2} =

= (\partial_x (2 \alpha \psi^{-6} \hat{A}^{yx}))_{i,j,k} + (\partial_y (2 \alpha \psi^{-6} \hat{A}^{yy}))_{i,j,k} + (\partial_z (2 \alpha \psi^{-6} \hat{A}^{yz}) )_{i,j,k} -

- \frac{1}{3} (\partial_y \Theta_\beta)_{i,j,k}.

Y, por último:

\Delta \beta^z = \partial_x (2 \alpha \psi^{-6} \hat{A}^{zx}) + \partial_y (2 \alpha \psi^{-6} \hat{A}^{zy}) + \partial_z (2 \alpha \psi^{-6} \hat{A}^{zz}) - \frac{1}{3} \partial_z \Theta_\beta \approx

\approx \frac{\beta^z_{i-1,j,k}-2\beta^z_{i,j,k}+\beta^z_{i+1,j,k}}{h_x^2} + \frac{\beta^z_{i,j-1,k}-2\beta^z_{i,j,k}+\beta^z_{i,j+1,k}}{h_y^2} + \frac{\beta^z_{i,j,k-1}-2\beta^z_{i,j,k}+\beta^z_{i,j,k+1}}{h_z^2} =

= (\partial_x (2 \alpha \psi^{-6} \hat{A}^{zx}))_{i,j,k} + (\partial_y (2 \alpha \psi^{-6} \hat{A}^{zy}))_{i,j,k} + (\partial_z (2 \alpha \psi^{-6} \hat{A}^{zz}) )_{i,j,k} -

- \frac{1}{3} (\partial_z \Theta_\beta)_{i,j,k}.

Parece que, del sistema no lineal acoplado inicial, hemos llegado a un sistema de diez ecuaciones desacopladas donde ocho de ellas son lineales y solo dos son no linales. No pinta mal. Ya escribiremos próximamente sobre las condiciones de contorno…

Algunas imagenes VisIt resultantes de interpolaciones entre mallas esféricas y mallas cartesianas de componentes de la métrica en el formalismo 3+1:

  • \beta^z (pseudocolor):
  • \alpha (contour):

alphaSphCar

Vamos a discretizar las ecuaciones que comentamos en este post. Para ello, discretizaremos las derivadas de la siguiente manera:

\partial_x u = \frac{u_{i+1,j,k}-u_{i-1,j,k}}{2h_x},

\partial_y u = \frac{u_{i,j+1,k}-u_{i,j-1,k}}{2h_y},

\partial_z u = \frac{u_{i,j,k+1}-u_{i,j,k-1}}{2h_z},

\partial_{xx} u = \frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{h_x^2},

\partial_{yy} u = \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{h_y^2},

\partial_{zz} u = \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{h_z^2},

\partial_{xy} u = \frac{u_{i-1,j-1,k}-u_{i+1,j-1,k}-u_{i-1,j+1,k}+u_{i+1,j+1,k}}{4h_xh_y},

\partial_{xz} u = \frac{u_{i-1,j,k-1}-u_{i+1,j,k-1}-u_{i-1,j,k+1}+u_{i+1,j,k+1}}{4h_xh_z},

\partial_{yz} u = \frac{u_{i,j-1,k-1}-u_{i,j+1,k-1}-u_{i,j-1,k+1}+u_{i,j+1,k+1}}{4h_yh_z}.

El primer grupo de ecuaciones quedaría:

\partial_{xx} X^x + \partial_{yy} X^x + \partial_{zz} X^x = 8 \pi \psi^6 \rho h w^2 v_x - \frac{1}{3} \partial_x (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx \frac{X^x_{i-1,j,k}-2X^x_{i,j,k}+X^x_{i+1,j,k}}{h_x^2} + \frac{X^x_{i,j-1,k}-2X^x_{i,j,k}+X^x_{i,j+1,k}}{h_y^2} + \frac{X^x_{i,j,k-1}-2X^x_{i,j,k}+X^x_{i,j,k+1}}{h_z^2} =

= 8 \pi \psi^6_{i,j,k} \rho_{i,j,k} h_{i,j,k} w^2_{i,j,k} v_{x_{i,j,k}} - \frac{1}{3} ( \frac{X^x_{i-1,j,k}-2X^x_{i,j,k}+X^x_{i+1,j,k}}{h_x^2} +

+ \frac{X^y_{i-1,j-1,k}-X^y_{i+1,j-1,k}-X^y_{i-1,j+1,k}+X^y_{i+1,j+1,k}}{4h_xh_y} +

+ \frac{X^z_{i-1,j,k-1}-X^z_{i+1,j,k-1}-X^z_{i-1,j,k+1}+X^z_{i+1,j,k+1}}{4h_xh_z} ),

y además, para los esquemas de relajación no lineales, reescribimos la igualdad anterior como F(X^x_{i,j,k})=0 y entonces tenemos:

\partial_{X^x_{i,j,k}} F(X^x_{i,j,k}) = -2 ( \frac{4}{3}\frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2}).

\partial_{xx} X^y + \partial_{yy} X^y + \partial_{zz} X^y = 8 \pi \psi^6 \rho h w^2 v_y - \frac{1}{3} \partial_y (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx \frac{X^y_{i-1,j,k}-2X^y_{i,j,k}+X^y_{i+1,j,k}}{h_x^2} + \frac{X^y_{i,j-1,k}-2X^y_{i,j,k}+X^y_{i,j+1,k}}{h_y^2} + \frac{X^y_{i,j,k-1}-2X^y_{i,j,k}+X^y_{i,j,k+1}}{h_z^2} =

= 8 \pi \psi^6_{i,j,k} \rho_{i,j,k} h_{i,j,k} w^2_{i,j,k} v_{y_{i,j,k}} - \frac{1}{3} ( \frac{X^x_{i-1,j-1,k}-X^x_{i+1,j-1,k}-X^x_{i-1,j+1,k}+X^x_{i+1,j+1,k}}{4h_xh_y} +

+ \frac{X^y_{i,j-1,k}-2X^y_{i,j,k}+X^y_{i,j+1,k}}{h_y^2} +

+ \frac{X^z_{i-1,j,k-1}-X^z_{i+1,j,k-1}-X^z_{i-1,j,k+1}+X^z_{i+1,j,k+1}}{4h_yh_z} ),

con:

\partial_{X^y_{i,j,k}} F(X^y_{i,j,k}) = -2 ( \frac{1}{h_x^2} +\frac{4}{3} \frac{1}{h_y^2} + \frac{1}{h_z^2}).

\partial_{xx} X^z + \partial_{yy} X^z + \partial_{zz} X^z = 8 \pi \psi^6 \rho h w^2 v_z - \frac{1}{3} \partial_z (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx \frac{X^z_{i-1,j,k}-2X^z_{i,j,k}+X^z_{i+1,j,k}}{h_x^2} + \frac{X^z_{i,j-1,k}-2X^z_{i,j,k}+X^z_{i,j+1,k}}{h_y^2} + \frac{X^z_{i,j,k-1}-2X^z_{i,j,k}+X^z_{i,j,k+1}}{h_z^2} =

= 8 \pi \psi^6_{i,j,k} \rho_{i,j,k} h_{i,j,k} w^2_{i,j,k} v_{z_{i,j,k}} - \frac{1}{3} ( \frac{X^x_{i-1,j,k-1}-X^x_{i+1,j,k-1}-X^x_{i-1,j,k+1}+X^x_{i+1,j,k+1}}{4h_xh_z} +

+ \frac{X^y_{i,j-1,k-1}-X^y_{i,j+1,k-1}-X^y_{i,j-1,k+1}+X^y_{i,j+1,k+1}}{4h_yh_z} )

+ \frac{X^z_{i,j,k-1}-2X^z_{i,j,k}+X^z_{i,j,k+1}}{h_z^2}

con:

\partial_{X^z_{i,j,k}} = F(X^z_{i,j,k}) = -2 ( \frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{4}{3} \frac{1}{h_z^2}).

A continuación, discretizamos las siguientes ecuaciones:

\hat{A}^{xx} = 2 \partial_x X^x - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx \frac{2}{3}\frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -\frac{1}{3} \frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} - \frac{1}{3} \frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = \hat{A}^{xx}_{i,j,k},

\hat{A}^{xy} = \hat{A}^{yx}= \partial_x X^y + \partial_y X^x \approx

\approx \frac{X^y_{i+1,j,k}-X^y_{i-1,j,k}}{2h_x} + \frac{X^x_{i,j+1,k}-X^x_{i,j-1,k}}{2h_y} = \hat{A}^{xy}_{i,j,k} = \hat{A}^{yx}_{i,j,k},

\hat{A}^{xz} = \hat{A}^{zx} = \partial_x X^z + \partial_z X^x \approx

\approx \frac{X^z_{i+1,j,k}-X^z_{i-1,j,k}}{2h_x} + \frac{X^x_{i,j,k+1}-X^x_{i,j,k-1}}{2h_z} = \hat{A}^{xz}_{i,j,k} = \hat{A}^{zx}_{i,j,k},

\hat{A}^{yy} = 2 \partial_y X^y - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx -\frac{1}{3}\frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} +\frac{2}{3} \frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} - \frac{1}{3} \frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = \hat{A}^{yy}_{i,j,k},

\hat{A}^{yz} = \hat{A}^{zy} = \partial_y X^z + \partial_z X^y \approx

\approx \frac{X^z_{i,j+1,k}-X^z_{i,j-1,k}}{2h_y} + \frac{X^y_{i,j,k+1}-X^y_{i,j,k-1}}{2h_z} = \hat{A}^{yz}_{i,j,k} = \hat{A}^{zy}_{i,j,k},

\hat{A}^{zz} = 2 \partial_z X^z - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z) \approx

\approx -\frac{1}{3}\frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -\frac{1}{3} \frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} + \frac{2}{3} \frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = \hat{A}^{zz}_{i,j,k}.

Por tanto, la siguiente ecuación:

\Delta \psi = -2 \pi \psi^{-1} (D + \tau) - \psi^{-7} \frac{(\hat{A}^{xx})^2+(\hat{A}^{yy})^2+(\hat{A}^{zz})^2+2(\hat{A}^{xy})^2+2(\hat{A}^{xz})^2+2(\hat{A}^{yz})^2}{8}

queda:

\approx \frac{\psi_{i-1,j,k}-2\psi_{i,j,k}+\psi_{i+1,j,k}}{h_x^2} + \frac{\psi_{i,j-1,k}-2\psi_{i,j,k}+\psi_{i,j+1,k}}{h_y^2} + \frac{\psi_{i,j,k-1}-2\psi_{i,j,k}+\psi_{i,j,k+1}}{h_z^2} =

=-2 \pi \psi^{-1}_{i,j,k} (D_{i,j,k}+\tau_{i,j,k}) -

- \frac{\psi^{-7}_{i,j,k}}{8} ( (\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2 ) ,

con:

\partial_{\psi_{i,j,k}} F(\psi_{i,j,k}) = -2 ( \frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2} ) -2 \pi \psi_{i,j,k}^{-2} (D_{i,j,k}+\tau_{i,j,k}) -

- \frac{7}{8} \psi^{-8}_{i,j,k} ( (\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2 ).

y la ecuación:

\Delta (\alpha\psi) = 2 \pi (\alpha\psi)^{-1} ( D + \tau + 2 \rho h (w^2-1) + 6 p) +

+ \frac{7}{8} (\alpha \psi)^{-7} ((\hat{A}^{xx})^2+(\hat{A}^{yy})^2+(\hat{A}^{zz})^2+2(\hat{A}^{xy})^2+2(\hat{A}^{xz})^2+2(\hat{A}^{yz})^2)

como:

\approx \frac{(\alpha\psi)_{i-1,j,k} - 2(\alpha\psi)_{i,j,k}+(\alpha\psi)_{i+1,j,k}}{h_x^2} + \frac{(\alpha\psi)_{i,j-1,k}-2(\alpha\psi)_{i,j,k}+(\alpha\psi)_{i,j+1,k}}{h_y^2} + \frac{(\alpha\psi)_{i,j,k-1}-2(\alpha\psi)_{i,j,k}+(\alpha\psi)_{i,j,k+1}}{h_z^2} =

=2 \pi (\alpha\psi)_{i,j,k}^{-1} (D_{i,j,k}+\tau_{i,j,k} + 2 \rho_{i,j,k} h_{i,j,k} (w^2_{i,j,k}-1)+6p_{i,j,k}) +

+ \frac{7}{8}(\alpha\psi)_{i,j,k}^{-7} ( (\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2 ) ,

donde:

\partial_{\psi\alpha_{i,j,k}} F(\psi\alpha_{i,j,k}) = -2 ( \frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2} ) +

+ 2 \pi (\psi\alpha)_{i,j,k}^{-2} (D_{i,j,k}+\tau_{i,j,k} + 2 \rho_{i,j,k} h_{i,j,k} (w^2_{i,j,k}-1)+6p_{i,j,k}) -

+ \frac{49}{8} (\psi\alpha)_{i,j,k}^{-8} ( (\hat{A}^{xx}_{i,j,k})^2+(\hat{A}^{yy}_{i,j,k})^2+(\hat{A}^{zz}_{i,j,k})^2+2(\hat{A}^{xy}_{i,j,k})^2+2(\hat{A}^{xz}_{i,j,k})^2+2(\hat{A}^{yz}_{i,j,k})^2 ).

Finalmente, tenemos:

\Delta \beta^x = \partial_x (2 \alpha \psi^{-6} \hat{A}^{xx}) + \partial_y (2 \alpha \psi^{-6} \hat{A}^{xy}) + \partial_z (2 \alpha \psi^{-6} \hat{A}^{xz}) -

- \frac{1}{3} \partial_x (\partial_x \beta^x + \partial_y \beta^y + \partial_z \beta^z) \approx

\approx \frac{\beta^x_{i-1,j,k}-2\beta^x_{i,j,k}+\beta^x_{i+1,j,k}}{h_x^2} + \frac{\beta^x_{i,j-1,k}-2\beta^x_{i,j,k}+\beta^x_{i,j+1,k}}{h_y^2} + \frac{\beta^x_{i,j,k-1}-2\beta^x_{i,j,k}+\beta^x_{i,j,k+1}}{h_z^2} =

= \frac{(\alpha \psi)_{i+1,j,k}^{-6} \hat{A}_{i+1,j,k}^{xx} - (\alpha \psi)_{i-1,j,k}^{-6} \hat{A}_{i-1,j,k}^{xx}}{h_x} +

+ \frac{(\alpha \psi)_{i,j+1,k}^{-6} \hat{A}_{i,j+1,k}^{xy} - (\alpha \psi)_{i,j-1,k}^{-6} \hat{A}_{i,j-1,k}^{xy}}{h_y} +

+ \frac{(\alpha \psi)_{i,j,k+1}^{-6} \hat{A}_{i,j,k+1}^{xz} - (\alpha \psi)_{i,j,k-1}^{-6} \hat{A}_{i,j,k-1}^{xz}}{h_z} -

- \frac{1}{3} ( \frac{\beta^x_{i-1,j,k}-2\beta^x_{i,j,k}+\beta^x_{i+1,j,k}}{h_x^2} +

+ \frac{\beta^y_{i-1,j-1,k}-\beta^y_{i+1,j-1,k}-\beta^y_{i-1,j+1,k}+\beta^y_{i+1,j+1,k}}{4 h_x h_y} +

+ \frac{\beta^z_{i-1,j,k-1}-\beta^z_{i+1,j,k-1}-\beta^z_{i-1,j,k+1}+\beta^z_{i+1,j,k+1}}{4 h_x h_z} ,

con:

\partial_{\beta^x_{i,j,k}} F(\beta^x_{i,j,k}) = -2 ( \frac{4}{3}\frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{1}{h_z^2}),

\Delta \beta^y = \partial_x (2 \alpha \psi^{-6} \hat{A}^{yx}) + \partial_y (2 \alpha \psi^{-6} \hat{A}^{yy}) + \partial_z (2 \alpha \psi^{-6} \hat{A}^{yz}) -

- \frac{1}{3} \partial_y (\partial_x \beta^x + \partial_y \beta^y + \partial_z \beta^z) \approx

\approx \frac{\beta^y_{i-1,j,k}-2\beta^y_{i,j,k}+\beta^y_{i+1,j,k}}{h_x^2} + \frac{\beta^y_{i,j-1,k}-2\beta^y_{i,j,k}+\beta^y_{i,j+1,k}}{h_y^2} + \frac{\beta^y_{i,j,k-1}-2\beta^y_{i,j,k}+\beta^y_{i,j,k+1}}{h_z^2} =

= \frac{(\alpha \psi)_{i+1,j,k}^{-6} \hat{A}_{i+1,j,k}^{yx} - (\alpha \psi)_{i-1,j,k}^{-6} \hat{A}_{i-1,j,k}^{yx}}{h_x} +

+ \frac{(\alpha \psi)_{i,j+1,k}^{-6} \hat{A}_{i,j+1,k}^{yy} - (\alpha \psi)_{i,j-1,k}^{-6} \hat{A}_{i,j-1,k}^{yy}}{h_y} +

+ \frac{(\alpha \psi)_{i,j,k+1}^{-6} \hat{A}_{i,j,k+1}^{yz} - (\alpha \psi)_{i,j,k-1}^{-6} \hat{A}_{i,j,k-1}^{yz}}{h_z} -

- \frac{1}{3} ( \frac{\beta^x_{i-1,j-1,k}-\beta^x_{i+1,j-1,k}-\beta^x_{i-1,j+1,k}+\beta^x_{i+1,j+1,k}}{4h_xh_y} +

+ \frac{\beta^y_{i,j-1,k}-2\beta^y_{i,j,k}+\beta^y_{i,j+1,k}}{h_y^2} +

+ \frac{\beta^z_{i-1,j,k-1}-\beta^z_{i+1,j,k-1}-\beta^z_{i-1,j,k+1}+\beta^z_{i+1,j,k+1}}{4h_yh_z} ),

con:

\partial_{\beta^y_{i,j,k}} F(\beta^y_{i,j,k}) = -2 ( \frac{1}{h_x^2} + \frac{4}{3} \frac{1}{h_y^2} + \frac{1}{h_z^2}),

\Delta \beta^z = \partial_x (2 \alpha \psi^{-6} \hat{A}^{zx}) + \partial_y (2 \alpha \psi^{-6} \hat{A}^{zy}) + \partial_z (2 \alpha \psi^{-6} \hat{A}^{zz}) -

- \frac{1}{3} \partial_z (\partial_x \beta^x + \partial_y \beta^y + \partial_z \beta^z) \approx

\approx \frac{\beta^z_{i-1,j,k}-2\beta^z_{i,j,k}+\beta^z_{i+1,j,k}}{h_x^2} + \frac{\beta^z_{i,j-1,k}-2\beta^z_{i,j,k}+\beta^z_{i,j+1,k}}{h_y^2} + \frac{\beta^z_{i,j,k-1}-2\beta^z_{i,j,k}+\beta^z_{i,j,k+1}}{h_z^2} =

= \frac{(\alpha \psi)_{i+1,j,k}^{-6} \hat{A}_{i+1,j,k}^{zx} - (\alpha \psi)_{i-1,j,k}^{-6} \hat{A}_{i-1,j,k}^{zx}}{h_x} +

+ \frac{(\alpha \psi)_{i,j+1,k}^{-6} \hat{A}_{i,j+1,k}^{zy} - (\alpha \psi)_{i,j-1,k}^{-6} \hat{A}_{i,j-1,k}^{zy}}{h_y} +

+ \frac{(\alpha \psi)_{i,j,k+1}^{-6} \hat{A}_{i,j,k+1}^{zz} - (\alpha \psi)_{i,j,k-1}^{-6} \hat{A}_{i,j,k-1}^{zz}}{h_z} -

- \frac{1}{3} ( \frac{\beta^x_{i-1,j,k-1}-\beta^x_{i+1,j,k-1}-\beta^x_{i-1,j,k+1}+\beta^x_{i+1,j,k+1}}{4h_xh_z} +

+ \frac{\beta^y_{i,j-1,k-1}-\beta^y_{i,j+1,k-1}-\beta^y_{i,j-1,k+1}+\beta^y_{i,j+1,k+1}}{4h_yh_z} )

+ \frac{\beta^z_{i,j,k-1}-2\beta^z_{i,j,k}+\beta^z_{i,j,k+1}}{h_z^2},

con:

\partial_{\beta^z_{i,j,k}} F(\beta^z_{i,j,k}) = -2 ( \frac{1}{h_x^2} + \frac{1}{h_y^2} + \frac{4}{3} \frac{1}{h_z^2} ).

Hace tiempo que no escribo nada pues estoy intentando terminar un programa que ya va tocando…

Para que no se diga, añado a continuación una imagen que he obtenido hace un momento, y que me ha hecho gracia, cuando pintaba el error entre la solución analítica de un problema de Poisson tridimensional y mi solución aproximada.

caraError

Se diría que estoy diseñando la cabeza de un nuevo personaje de animación, ¿no?

:mrgreen:

Una presentación con parámetros tweeter:

tweetPres

Calculamos la curvatura escalar R para la métrica de Kerr-Newman, es decir, para la solución analítica a las ecuaciones de Einstein en presencia de momento y de carga (J \neq 0 y Q \neq 0).

La métrica es:

g = -\frac{J^2+M^2 \left(Q^2+r (-2 M+r)\right)+J^2 \text{Sin}[\theta ]^2}{M^2 r^2+J^2 \text{Cos}[\theta ]^2} dt \otimes dt +

+ 2 \frac{J M \left(Q^2-2 M r\right) \text{Sin}[\theta ]^2}{M^2 r^2+J^2 \text{Cos}[\theta ]^2} dt \tilde{\otimes} d\varphi +

+ \frac{M^2 r^2+J^2 \text{Cos}[\theta ]^2}{J^2+M^2 \left(Q^2+r (-2 M+r)\right)} dr \otimes dr +

r^2+\frac{J^2 \text{Cos}[\theta ]^2}{M^2} d\theta \otimes d\theta +

+ \frac{\left(\frac{J^2}{M^2}+r^2\right)^2 \text{Sin}[\theta ]^2}{r^2+\frac{J^2 \text{Cos}[\theta ]^2}{M^2}}+\frac{J^2 \text{Sin}[\theta ]^4}{M^2} d\varphi \otimes d\varphi.

Como ya hemos hecho con la métrica de Kerr, solo mostramos una componente de cada elemento calculado debido a su extrema complejidad (como para realizar los cálculos manualmente…):

R^{r}_{\theta \varphi t}:

tRiemann_kn_rthvpt

R_{r \theta}:

tRicci_kn_rth

Utilizando nuestras funciones, obtenemos los siguientes gráficos:

M=0.9, J=0.1, Q=0.5:

R_M09_J01_Q05

M=0.9, J=0.1, Q=0.25:

R_M09_J01_Q025

M=1, J=1, Q=1:

R_M1_Q1_J1

M=0.1, J=0.9, Q=0.5:

R_M01_J09_Q05

Volvemos a representar los gráficos de este post pero ahora en coordenadas cilíndricas, que tienen mas sentido:

Calcularemos el tensor de Riemann, el de Ricci y la curvatura escalar para la métrica de Kerr correspondiente a un agujero negro en rotación y sin carga eléctrica (J \neq 0, Q=0), cuya métrica ya utilizamos.

A continuación, mostramos nuestras funciones para realizar los calculos automáticamente:

tensor de Riemann:

riemanNd

tensor de Ricci:

ricciNd

curvatura escalar:

rNd

y obtenemos (solo escribiremos una elemento de cada debido a su complejidad):

R^{t}_{tt\varphi}:

tRiemann_rtttvp

donde x1=t, x2=r, x3=\theta, x4=\varphi.

R_{r\theta}:

tRicci_rth

y dos gráficas correspondientes a su curvatura escalar R:

curvaturaEscalar3D2

curvaturaEscalar3D

En la definición de la métrica, tenemos la restricción 0 \leq \frac{a}{M} \leq 1, que en nuestro caso, como imponemos M=1, nos queda 0 \leq J \leq 1. A continuación una serie de gráficos en los que hacemos el valor de

J=0.1, 0.25, 0.5, 0.75, 0.9, 1:

Para empezar, empezaremos escribiendo las ecuaciones en coordenadas de cada uno de los elementos que queremos calcular.

El tensor de curvatura de Riemann:

R^{a}_{bcd} = \partial_c \Gamma^{a}_{bd} - \partial_d \Gamma^{a}_{bc} + \Gamma^{a}_{ec} \Gamma^{e}_{bd} - \Gamma^{a}_{ed} \Gamma^{e}_{bc},

el tensor de Ricci:

R_{ab} = R^{c}_{acb} = \partial_c \Gamma^{c}_{bd} - \partial_d \Gamma^{c}_{bc} + \Gamma^{c}_{ec} \Gamma^{e}_{bd} - \Gamma^{c}_{ed} \Gamma^{e}_{bc},

la curvatura escalar:

R = R^{a}_{a}

y el tensor de Weyl:

C_{abcd} = R_{abcd} -

- \frac{1}{2}(g_{ac}R_{bd}-g_{ad}R_{bc}-g_{bc}R_{ad}+g_{bd}R_{ac}) + \frac{1}{6}(g_{ac}g_{bd}-g_{ad}g_{bc}) R

Empezamos con la esfera S^2(\frac{1}{r^2}). Recordamos los símbolos de Christoffel que encontramos:

\Gamma^{\theta}_{\theta \theta} = 0, \Gamma^{\theta}_{\theta \varphi} = \Gamma^{\theta}_{\varphi \theta} = 0, \Gamma^{\theta}_{\varphi \varphi} = -\sin \theta \cos \theta,

\Gamma^{\varphi}_{\theta \theta} = 0, \Gamma^{\varphi}_{\theta \varphi} = \Gamma^{\varphi}_{\varphi \theta} = \cot \theta, \Gamma^{\varphi}_{\varphi \varphi} = 0

(Escribir ahora las ecuaciones de las geodésicas es inmediato: una equacion por variable contravariante donde aparece la segunda derivada de esta y un termino para cada símbolo no nulo de la fila con la primera derivada de las variables covariantes:

\begin{cases} \ddot{\theta} - \dot{\varphi}^2 \sin \theta \cos \theta = 0 \\ \ddot{\varphi} + 2 \dot{\theta} \dot{\varphi} \cot \theta = 0 \end{cases}

que coincide con lo que calculamos en este post de otra manera sin necesidad de los símbolos de Christoffel).

Tenemos cuatro índices y cada uno puede tomar dos valores, pues estamos trabajando con superificies, variedades de dos dimensiones, por lo que tenemos un tensor de con 16 componentes (en el caso de estar trabajando con una variedad de cuatro dimensiones como es espacio-tiempo, el tensor de Riemann tiene 256 componentes..). Aunque existe una serie de propiedades que minimizan el número de componentes de n^4 a \frac{1}{12}n^2(n^2-1) (simetrías, antisimetrías e identidades de Bianchi) vamos a calcularlos todos aquí para practicar.

R^{\theta}_{ \theta \theta \theta} = \partial_\theta \Gamma^{\theta}_{\theta \theta} -\partial_\theta \Gamma^{\theta}_{\theta \theta} + \Gamma^{\theta}_{\theta \theta} \Gamma^{\theta}_{\theta \theta} + \Gamma^{\theta}_{\varphi \theta} \Gamma^{\varphi}_{\theta \theta} - \Gamma^{\theta}_{\theta \theta} \Gamma^{\theta}_{\theta \theta} - \Gamma^{\theta}_{\varphi \theta} \Gamma^{\varphi}_{\theta \theta} = 0

R^{\theta}_{ \theta \theta \varphi} = \partial_\theta \Gamma^{\theta}_{\theta \varphi} -\partial_\varphi \Gamma^{\theta}_{\theta \theta} + \Gamma^{\theta}_{\theta \theta} \Gamma^{\theta}_{\theta \varphi} + \Gamma^{\theta}_{\varphi \theta} \Gamma^{\varphi}_{\theta \varphi} - \Gamma^{\theta}_{\theta \varphi} \Gamma^{\theta}_{\theta \theta} - \Gamma^{\theta}_{\varphi \varphi} \Gamma^{\varphi}_{\theta \theta} = 0

R^{\theta}_{ \theta \varphi \theta} = \partial_\varphi \Gamma^{\theta}_{\theta \theta} -\partial_\theta \Gamma^{\theta}_{\theta \varphi} + \Gamma^{\theta}_{\theta \varphi} \Gamma^{\theta}_{\theta \theta} + \Gamma^{\theta}_{\varphi \varphi} \Gamma^{\varphi}_{\theta \theta} - \Gamma^{\theta}_{\theta \theta} \Gamma^{\theta}_{\theta \varphi} - \Gamma^{\theta}_{\varphi \theta} \Gamma^{\varphi}_{\theta \varphi} = 0

R^{\theta}_{ \theta \varphi \varphi} = \partial_\varphi \Gamma^{\theta}_{\theta \varphi} -\partial_\varphi \Gamma^{\theta}_{\theta \varphi} + \Gamma^{\theta}_{\theta \varphi} \Gamma^{\theta}_{\theta \varphi} + \Gamma^{\theta}_{\varphi \varphi} \Gamma^{\varphi}_{\theta \varphi} - \Gamma^{\theta}_{\theta \varphi} \Gamma^{\theta}_{\theta \varphi} - \Gamma^{\theta}_{\varphi \varphi} \Gamma^{\varphi}_{\theta \varphi} = 0

R^{\theta}_{ \varphi \theta \theta} = 0

R^{\theta}_{ \varphi \theta \varphi} =

= \partial_\theta \Gamma^{\theta}_{\varphi \varphi} -\partial_\varphi \Gamma^{\theta}_{\varphi \theta} + \Gamma^{\theta}_{\theta \theta} \Gamma^{\theta}_{\varphi \varphi} + \Gamma^{\theta}_{\varphi \theta} \Gamma^{\varphi}_{\varphi \varphi} - \Gamma^{\theta}_{\theta \varphi} \Gamma^{\theta}_{\varphi \theta} - \Gamma^{\theta}_{\varphi \varphi} \Gamma^{\varphi}_{\varphi \theta} = \sin^2 \theta

R^{\theta}_{ \varphi \varphi \theta} =

= \partial_\varphi \Gamma^{\theta}_{\varphi \theta} -\partial_\theta \Gamma^{\theta}_{\varphi \varphi} + \Gamma^{\theta}_{\theta \varphi} \Gamma^{\theta}_{\varphi \theta} + \Gamma^{\theta}_{\varphi \varphi} \Gamma^{\varphi}_{\varphi \theta} - \Gamma^{\theta}_{\theta \theta} \Gamma^{\theta}_{\varphi \varphi} - \Gamma^{\theta}_{\varphi \theta} \Gamma^{\varphi}_{\varphi \varphi} = -\sin^2 \theta

R^{\theta}_{\varphi \varphi \varphi} = 0

R^{\varphi}_{ \theta \theta \theta} = 0

R^{\varphi}_{ \theta \theta \varphi} = \partial_\theta \Gamma^{\varphi}_{\theta \varphi} -\partial_\varphi \Gamma^{\varphi}_{\theta \theta} + \Gamma^{\varphi}_{\theta \theta} \Gamma^{\theta}_{\theta \varphi} + \Gamma^{\varphi}_{\varphi \theta} \Gamma^{\varphi}_{\theta \varphi} - \Gamma^{\varphi}_{\theta \varphi} \Gamma^{\theta}_{\theta \theta} - \Gamma^{\varphi}_{\varphi \varphi} \Gamma^{\varphi}_{\theta \theta} = -1

R^{\varphi}_{ \theta \varphi \theta} = \partial_\varphi \Gamma^{\varphi}_{\theta \theta} -\partial_\theta \Gamma^{\varphi}_{\theta \varphi} + \Gamma^{\varphi}_{\theta \varphi} \Gamma^{\theta}_{\theta \theta} + \Gamma^{\varphi}_{\varphi \varphi} \Gamma^{\varphi}_{\theta \theta} - \Gamma^{\varphi}_{\theta \theta} \Gamma^{\theta}_{\theta \varphi} - \Gamma^{\varphi}_{\varphi \theta} \Gamma^{\varphi}_{\theta \varphi} = 1

R^{\varphi}_{ \theta \varphi \varphi} = 0

R^{\varphi}_{ \varphi \theta \theta} = 0

R^{\varphi}_{ \varphi \theta \varphi} = 0

R^{\varphi}_{ \varphi \varphi \theta} = 0

R^{\varphi}_{\varphi \varphi \varphi} = 0

Continuamos con el tensor de Ricci. Podemos calcularlo a partir de la formula o a partir del tensor de Riemann, que ya lo tenemos. Lo haremos de esta última manera:

R_{\theta \theta} = R^{a}_{\theta a \theta} = R^{\theta}_{\theta \theta \theta} + R^{\varphi}_{\theta \varphi \theta} = 1

R_{\theta \varphi} = R^{a}_{\theta a \varphi} = R^{\theta}_{\theta \theta \varphi} + R^{\varphi}_{\theta \varphi \varphi} = 0

R_{\varphi \theta} = R^{a}_{\varphi a \theta} = R^{\theta}_{\varphi \theta \theta} + R^{\varphi}_{\varphi \varphi \theta} = 0

R_{\varphi \varphi} = R^{a}_{\varphi a \varphi} = R^{\theta}_{\varphi \theta \varphi} + R^{\varphi}_{\varphi \varphi \varphi} = \sin^2 \theta.

Finalmente, calculamos la curvatura escalar:

g^{cb}R_{ab} = R^c_a,

R^a_a = g^{\theta \theta}R_{\theta \theta} + g^{\theta \varphi}R_{\theta \varphi} + g^{\varphi \theta}R_{\varphi \theta} + g^{\varphi \varphi}R_{\varphi \varphi} = \frac{1}{r^2}1+\frac{1}{r^2 \sin^2 \theta} \sin^2 = \frac{2}{r^2},

que es, tal y como esperabamos, la mitad de la curvatura de Gauss (R = 2K).

Seguimos ahora con la pseudoesfera \mathbb{H}^2(-\frac{1}{r^2}). Los símbolos de Christoffel eran:

\Gamma^{\theta}_{\theta \theta} = -\csc \theta \sec \theta, \Gamma^{\theta}_{\theta \varphi} = \Gamma^{\theta}_{\varphi \theta} = 0, \Gamma^{\theta}_{\varphi \varphi} = -\sin^2 \theta \tan \theta,

\Gamma^{\varphi}_{\theta \theta} = 0, \Gamma^{\varphi}_{\theta \varphi} = \Gamma^{\varphi}_{\varphi \theta} = \cot \theta, \Gamma^{\varphi}_{\varphi \varphi} = 0

(Aprovechamos otra vez, conocidos los símbolos de Christoffel, para escribir las ecuaciones de las geodésicas:

\begin{cases} \ddot{\theta} - \dot{\theta}^2 \csc \theta \sec \theta - \dot{\varphi}^2 \sin^2 \theta \tan \theta = 0 \\ \ddot{\varphi} + 2 \dot{\theta} \dot{\varphi} \cot \theta = 0 \end{cases}

que debería coincidir con la de aquí).

Como es bastante laborioso, aquí otro programita, esta vez para el tensor de Riemann:

tensorRiemann

y los resultados:

tensorRiemannPseudoesfera

por tanto, Ricci es:

R_{\theta \theta} = R^{a}_{\theta a \theta} = R^{\theta}_{\theta \theta \theta} + R^{\varphi}_{\theta \varphi \theta} = - \cot^2 \theta

R_{\theta \varphi} = R^{a}_{\theta a \varphi} = R^{\theta}_{\theta \theta \varphi} + R^{\varphi}_{\theta \varphi \varphi} = 0

R_{\varphi \theta} = R^{a}_{\varphi a \theta} = R^{\theta}_{\varphi \theta \theta} + R^{\varphi}_{\varphi \varphi \theta} = 0

R_{\varphi \varphi} = R^{a}_{\varphi a \varphi} = R^{\theta}_{\varphi \theta \varphi} + R^{\varphi}_{\varphi \varphi \varphi} = -\sin^2 \theta.

y la curvatura escalar:

R=R^a_a = g^{\theta \theta}R_{\theta \theta} + g^{\theta \varphi}R_{\theta \varphi} + g^{\varphi \theta}R_{\varphi \theta} + g^{\varphi \varphi}R_{\varphi \varphi} =

= \frac{1}{r^2 \cot^2 \theta}(-\cot^2 \theta)+\frac{1}{r^2 \sin^2 \theta} (-\sin^2) = -\frac{2}{r^2},

que vuelve a ser R = 2K. Aquí es resultado con dos nuevas funciones programadas para el tensor de Ricci y la curvatura escalar:

RiemannRicciRH2

Por último, para \mathbb{R}^2 todo es 0.

Finalmente una gráfica de todas las curvaturas escalares que hemos encontrado:

curvaturaEscalar2D

Los colores son los mismos que los de las superficie correspondiente de este post y añadiendo en rojo la curvatura escalar del toro. Recordar que, en superficies, la curvatura escalar es el doble de la curvatura Gauss o curvatura intrínseca y esta, a su vez, es el producto de las dos curvaturas principales.

Cuando hablamos de soluciones analíticas de las ecuaciones de Einstein hablamos de los agujeros negros estacionarios en rotación y sin carga eléctrica (J \neq 0 y Q = 0). A esta solución analítica se la conoce  como métrica de Kerr.

Procedemos a buscar calcular los símbolos de Christoffel, la conexión de Levi-Civita y las geodésicas de la métrica de Kerr:

g = - (1-\frac{2Mr}{\Sigma})dt \otimes dt - \frac{4aMr\sin^2\theta}{\Sigma}dt \tilde{\otimes} d\varphi +

+ \frac{\Sigma}{\Delta}dr \otimes dr + \Sigma d\theta \otimes d\theta + (r^2+a^2+\frac{2a^2Mr\sin^2\theta}{\Sigma})sin^2\theta d\varphi \otimes d\varphi

donde a:=\frac{J}{M}, \Delta:= r^2 - 2Mr + a^2 y \Sigma = r^2 + a^2 \cos^2 \theta. El agujero negro está rotando en la dirección +\varphi y el espín está restringido al rango 0 \leq \frac{a}{M} \leq 1. Notar que recuperamos la métrica de Schwarzschild cuando a=0.

Modificamos ligeramente el programa que teniamos de manera que nos permita trabajar con metricas sobre variedades en 4 dimensiones (si el índices ic empieza en ib nos ahorramos los cálculos simétricos):


Simbolos[] := 
For[ia = 1, ia <= 4, ia++, 
  For[ib = 1, ib <= 4, ib++,
    For[ic = 1, ic <= 4, ic++,
      r = 0;
      For[ii = 1, ii <= 4, ii++,
        r = r + 
            FullSimplify[
                         1/2*Inverse[g][[ii]][[ia]]*(
                         D[g[[ii]][[ib]], x[[ic]]] + 
                         D[g[[ii]][[ic]], x[[ib]]] - 
                         D[g[[ib]][[ic]], x[[ii]]])
            ]
      ];
      Print["Gamma[", ia, ",", ib, ",", ic, "] = ", r]
    ]
  ]
]

Introducimos la métrica como siempre:

\left(  \begin{array}{cccc}  -1+\frac{2 M \text{x2}}{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}} & 0 & 0 & -\frac{2 J \text{x2} \text{Sin}[\text{x3}]^2}{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}} \\  0 & \frac{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}}{\frac{J^2}{M^2}-2 M \text{x2}+\text{x2}^2} & 0 & 0 \\  0 & 0 & \text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2} & 0 \\  -\frac{2 J \text{x2} \text{Sin}[\text{x3}]^2}{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}} & 0 & 0 & \text{Sin}[\text{x3}]^2 \left(\frac{J^2}{M^2}+\text{x2}^2+\frac{2 J^2 \text{x2} \text{Sin}[\text{x3}]^2}{M \left(\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}\right)}\right)  \end{array}  \right)

y en un momento obtenemos:

\Gamma^{1}_{\alpha \beta}:

Gamma1

\Gamma^2_{\alpha \beta}:

Gamma2

\Gamma^3_{\alpha \beta}:

Gamma3

\Gamma^4_{\alpha \beta}:

Gamma4

Calculamos ahora las ecuaciones de las geodesicas partiendo del hecho de que conocemos los símbolos de Christoffel. Como ya vimos, la ecuación en coordenadas a partir de estos es:

\frac{d^2}{dt^2}x^i + \Gamma^i_{jk} \frac{d}{dt}x^j \frac{d}{dt}x^k = 0.

Si nos fijamos, la estructura es sencilla: una ecuación por cada variable y, en esta, utilizamos los símbolos de Christoffel que la tienen como coordenada contravariante y cada símbolo acompañado del producto de las derivadas primeras de las variables que aparecen como covariantes.

Obviamente, y debido al tamaño de las expresiones, solo vamos a escribir de manera explícita alguna. Así pues, las ecuaciones de las geodésicas son:

\begin{cases} \ddot{t} + \ldots = 0 \\ \ddot{r} + \ldots = 0 \\ \ddot{\theta} + \ldots = 0 \\ \ddot{\varphi} + \ldots = 0 \end{cases}

donde, por ejemplo, para \theta tenemos (algunas expresiones no caben pero al pinchar y arrastrar se ven completas):

\ddot{\theta} -

- \frac{J^2 M^5 r \text{Sin}[\theta]}{\left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^3} \dot{t}^2 + \frac{J^2 M^2 \text{Sin}[\theta]}{2 \left(J^2+M^2 r (-2 M+r)\right) \left(M^2 r^2+J^2 \text{Cos}[\theta]\right)} \dot{r}^2 - \frac{J^2 \text{Sin}[\theta]}{2 M^2 r^2+2 J^2 \text{Cos}[\theta]} \dot{\theta}^2 -

-\frac{\left(J^2+M^2 r^2\right) \text{Cos}[\theta] \left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^2 \text{Sin}[\theta]+4 J^2 M^3 r \text{Cos}[\theta] \left(M^2 r^2+J^2 \text{Cos}[\theta]\right) \text{Sin}[\theta]^3+J^4 M^3 r \text{Sin}[\theta]^5}{\left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^3} \dot{\varphi}^2 +

+ \frac{J M^4 r \left(4 M^2 r^2 \text{Cos}[\theta]+J^2 (3+\text{Cos}[2 \theta])\right) \text{Sin}[\theta]}{\left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^3} \dot{t} \dot{\varphi} + \frac{r}{r^2+\frac{J^2 \text{Cos}[\theta]}{M^2}} \dot{r} \dot{\theta} = 0

Ya escribimos al respecto en este post. Aquí lo que haremos es reescribir las expresiones allí introducidas

En primer lugar, teniamos:

 \Delta X^i = 8 \pi f^{ij}S_j^* - \frac{1}{3}\mathcal{D}^i \mathcal{D}_j X^j

donde:

S_j^* := \sqrt{ \frac{\gamma}{f} } S = \psi^6 S_j,

S_j := \rho h w^2 v_j.

En el caso de estar trabajando en cartesianas y teniendo en cuenta todo el trabajo realizado en el artículo, nos queda:

\partial_{xx} X^x + \partial_{yy} X^x + \partial_{zz} X^x = 8 \pi \psi^6 \rho h w^2 v_x - \frac{1}{3} \partial_x (\partial_x X^x + \partial_y X^y + \partial_z X^z),

\partial_{xx} X^y + \partial_{yy} X^y + \partial_{zz} X^y = 8 \pi \psi^6 \rho h w^2 v_y - \frac{1}{3} \partial_y (\partial_x X^x + \partial_y X^y + \partial_z X^z),

\partial_{xx} X^z + \partial_{yy} X^z + \partial_{zz} X^z = 8 \pi \psi^6 \rho h w^2 v_z - \frac{1}{3} \partial_z (\partial_x X^x + \partial_y X^y + \partial_z X^z).

A continuación, y para la siguiente ecuación, necesitamos:

\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}

que queda como:

\hat{A}^{xx} = 2 \partial_x X^x - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z),

\hat{A}^{xy} = \hat{A}^{yx}= \partial_x X^y + \partial_y X^x,

\hat{A}^{xz} = \hat{A}^{zx} = \partial_x X^z + \partial_z X^x,

\hat{A}^{yy} = 2 \partial_y X^y - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z),

\hat{A}^{yz} = \hat{A}^{zy} = \partial_y X^z + \partial_z X^y,

\hat{A}^{zz} = 2 \partial_z X^z - \frac{2}{3} (\partial_x X^x + \partial_y X^y + \partial_z X^z),

por lo que:

\Delta \psi = -2 \pi \psi^{-1} E^* - \psi^{-7} \frac{f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8}

donde:

E^*:= \sqrt{ \frac{\gamma}{f} } E = \psi^6 E,

E:= D + \tau

es:

\Delta \psi = -2 \pi \psi^{-1} (D + \tau) - \psi^{-7} \frac{(\hat{A}^{xx})^2+(\hat{A}^{yy})^2+(\hat{A}^{zz})^2+2(\hat{A}^{xy})^2+2(\hat{A}^{xz})^2+2(\hat{A}^{yz})^2}{8}.

La siguiente:

\Delta (\alpha\psi) = 2 \pi (\alpha\psi)^{-1} (E^* + 2S^*) + \frac{7}{8} (\alpha\psi)^{-7} (f_{il} f{jm} \hat{A}^{lm} \hat{A}^{ij})

con:

S^*:= \sqrt{ \frac{\gamma}{f} } S = \psi^6 S,

S:= \rho h (w^2-1) + 3 p

queda:

\Delta (\alpha\psi) = 2 \pi (\alpha\psi)^{-1} ( D + \tau + 2 \rho h (w^2-1) + 6 p) +

+ \frac{7}{8}(\alpha\psi)^{-7} ((\hat{A}^{xx})^2+(\hat{A}^{yy})^2+(\hat{A}^{zz})^2+2(\hat{A}^{xy})^2+2(\hat{A}^{xz})^2+2(\hat{A}^{yz})^2)

Y la última:

\Delta \beta^i = \mathcal{D}_j (2 (\alpha\psi)^{-6} \hat{A}^{ij}) - \frac{1}{3} \mathcal{D}^i (\mathcal{D}_j \beta^j),

que escribimos como:

\Delta \beta^x = \partial_x (2 (\alpha \psi)^{-6} \hat{A}^{xx}) + \partial_y (2 (\alpha \psi)^{-6} \hat{A}^{xy}) + \partial_z (2 (\alpha \psi)^{-6} \hat{A}^{xz}) -

- \frac{1}{3} \partial_x (\partial_x \beta^x + \partial_y \beta^y + \partial_z \beta^z)

\Delta \beta^y = \partial_x (2 (\alpha \psi)^{-6} \hat{A}^{yx}) + \partial_y (2 (\alpha \psi)^{-6} \hat{A}^{yy}) + \partial_z (2 (\alpha \psi)^{-6} \hat{A}^{yz}) -

- \frac{1}{3} \partial_y (\partial_x \beta^x + \partial_y \beta^y + \partial_z \beta^z)

\Delta \beta^z = \partial_x (2 (\alpha \psi)^{-6} \hat{A}^{zx}) + \partial_y (2 (\alpha \psi)^{-6} \hat{A}^{zy}) + \partial_z (2 (\alpha \psi)^{-6} \hat{A}^{zz}) -

- \frac{1}{3} \partial_z (\partial_x \beta^x + \partial_y \beta^y + \partial_z \beta^z)

Tensor de energía impulso

Energía del campo electromagnético

En la Lecture III del curso sobre GR de C. Hirata nos comenta, por una parte, operaciones sobre tensores, y por otra, electrodinámica en relatividad especial.

La primera operación que define es el producto tensorial. Dados dos tensores A y B de tipo \binom{m}{n} y \binom{p}{q} respectivamente, podemos construir un nuevo tensor A \otimes B de tipo \binom{m+p}{n+q} haciendo:

(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{\tilde{k}},\ldots,\boldsymbol{u},\boldsymbol{\tilde{l}},\ldots,\boldsymbol{v}):=\boldsymbol{A}(\boldsymbol{\tilde{k}}\ldots\boldsymbol{u})\boldsymbol{B}(\boldsymbol{\tilde{l}},\ldots,\boldsymbol{v})

que en components queda:

(A \otimes B)^{\alpha_1 \ldots \alpha_m\,\,\gamma_1 \ldots \gamma_p}_{\beta_1 \ldots \beta_n \,\, \delta_1 \ldots \delta_q} = A^{ \alpha_1 \ldots \alpha_m}_{\beta_1 \ldots \beta_n} B^{\gamma_1 \ldots \gamma_p}_{\delta_1 \ldots \delta_q}

Comenta la idea intuitiva que lo que estamos haciendo es la generalización  a tensores de rango arbitrario del hecho de construir la matriz \boldsymbol{u}\boldsymbol{v^T} a partir de los dos vectores (columna, siempre columna los vectores…) \boldsymbol{u} y \boldsymbol{v}.

Ya comentamos que:

\boldsymbol{d}f(\boldsymbol{v}) = \frac{d}{dt}(\boldsymbol{x}(t) \circ f)|_{t=0}.

Podemos generalizarlo para un tensor \boldsymbol{T} de rango cualquiera. Por ejemplo, con rango \binom{1}{1} tendriamos T^{\alpha}_{\beta} y:

(\boldsymbol{\nabla T}

Contracción de un tensor

Transposición de un tensor

Simetrización y antisimetrización de un tensor

Producto exterior

Tensor de volumen

Derivada exterior

Con respecto a la parte de electrodinámica, empezamos con la fuerza de Lorentz clásica, que es la fuerza que experiementa una particula de masa m y carga e sometida a un cambo electromagnético:

m \frac{d}{dt} \boldsymbol{v} = e( \boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} ).

Para su generalización en SR necesitamos, por una parte, que la ecuación sea invariante Lorentz, y por otra, pensar como se generaliza el producto vectorial. La opción mas simple y que funciona es, pensando en 4-aceleraciones, el campo electromagnético y las 4-velocidades, la siguiente:

\frac{d}{d\tau}p^{\alpha} = m^{\alpha} = e F^{\alpha}_{\beta} u^{\beta}

Tenemos ahora 16 ecuaciones mientras que, hasta ahora, teniamos 6: 3 para el campo eléctrico y 3 para el campo magnético.

Ecuaciones de Maxwell

En su Lecture II, Christopher empieza hablando del gradiente \boldsymbol{d}f de un campo escalar f como una 1-forma (transformable en vector subiendo un índice) importante que nos permitirá definir bases de vectores y 1-formas en espacios curvados.

La explicación está bastante clara y lo que hace es traducir lo que nos encontrariamos trabajando con variedades a un lenguaje comprensible para aquellos que aun no las conocen, es decir, existe una manera general de construir la diferencial en un punto de una función con dominio en una variedad y los espacios planos con los que estamos trabajando no son mas que casos particulares de variedades donde las cartas son la identidad (podemos pensar \mathbb{R}^3 como una variedad diferenciable con la carta identidad: (\mathbb{R}^3,id). A partir de ahí podemos construir las variedades tangentes, T_m\mathbb{R}^3 \cong \mathbb{R}^3, y cotangente y en esta última aparece la diferencial como una 1-forma).

El resumen es, sean \alpha(t) una trayectoria y f un campo escalar en el espacio plano considerado, entonces podemos construir una función (f \circ \alpha)(t) = f(\alpha(t)) que, por ser una función de una variable, podemos derivar y evaluar en t=0:

\frac{d}{dt}(f \circ \alpha)(t)|_{t=0},

por lo que podemos escribir:

\frac{\partial}{\partial \boldsymbol{v}} f := \frac{d}{dt} (f \circ \alpha)(t) = \langle \boldsymbol{d}f, \boldsymbol{v} \rangle

donde \boldsymbol{v} = \frac{d}{dt}\alpha(t) y \boldsymbol{d}f es la 1-forma diferencial o gradiente de f.

En un espacio plano se puede escoger un sistema de referencia en el que las coordenadas x^\alpha son las componentes de vector de posición \boldsymbol{x} = x^\alpha \boldsymbol{e}_\alpha. En este caso:

\langle \boldsymbol{d}(x^\alpha) , \boldsymbol{v} \rangle = \frac{d}{dt}x^\alpha = v^\alpha,

por lo que $latex $, formando una base. Definimos \boldsymbol{d}(x^\alpha) := \boldsymbol{\omega}^\alpha.

Dada una partícula que sigue una trayectoria \boldsymbol{\alpha}(t) = x^{\alpha}(t), podemos parametrizarla mediante el tiempo propio \tau que es aquel que cumple:

|\frac{d}{d\tau}\boldsymbol{\alpha}(\tau)|^2 = \frac{d}{d\tau}x^{\alpha}(\tau) \cdot \frac{d}{d\tau}x^{\alpha}(\tau) = -1.

Siempre podemos reparametrizar haciendo:

\frac{d}{dt}\tau = \sqrt{-\frac{d}{dt}\alpha(t) \cdot \frac{d}{dt}\alpha(t)}.

La idea, desde el punto de vista de curvas sobre variedades, es que la parametrización mediante el tiempo propio no es mas que el equivalente a la parametrización por longitud de arco de manera de manera que nos permita medir la longitud de la misma que en este caso corresponde a medir tiempos (lo del reloj propio y estas cosas).

Para tener un invariante Lorentz de la velocidad \boldsymbol{v} definimos la 4-velocidad \boldsymbol{u} como:

\boldsymbol{u}:=\frac{d}{d\tau}\alpha(\tau),

ya que, como acabamos de ver, por construcción tenemos \boldsymbol{u} \cdot \boldsymbol{u} = -1.

Para un objeto con masa m definimos el 4-momento como \boldsymbol{p} = m \boldsymbol{v}, de manera que \boldsymbol{p} \cdot \boldsymbol{p} = -m^2. La componente temporal p^0 del 4-momento es la energía y las componentes espaciales p^i son los 3-momentos.

Finalmente, si hay fuerzas tenemos aceleraciones. La 4-aceleración \boldsymbol{a} se define como

\boldsymbol{a} = \frac{d}{d\tau}\boldsymbol{v} o a^{\mu} = \frac{d}{d\tau}v^{\mu}.

En variedades generales, para que la aceleración tenga sentido, necesitaremos trabajo extra, pues necesitaremos ser capaces de trasladar paralelamente vectores sobre la variedad.

Para finalizar, nos habla de algunos conceptos mas de algebra tensorial. En primer lugar define un tensor \boldsymbol{T} de tipo \binom{m}{n} como un operador lineal que actua sobre m 1-formas y n vectores y nos devuelve un escalar:

\boldsymbol{T}(\boldsymbol{\tilde{k}},\ldots, \boldsymbol{\tilde{l}}, \boldsymbol{u},\ldots, \boldsymbol{v})

y que, fijada una referencia, queda determinada por su actuación sobre los elementos de esta base:

\boldsymbol{T}(\boldsymbol{w}^{\alpha_1},\ldots,\boldsymbol{w}^{\alpha_m},\boldsymbol{e}_{\beta_1},\ldots,\boldsymbol{e}_{\beta_n}) = T^{\alpha_1,\ldots,\alpha_m}_{\beta_1,\ldots,\beta_n}.

Podemos ver una métrica \boldsymbol{g} como un tensor de tipo \binom{0}{2}, o 2 veces covariante, pues actua sobre 2 vectores y devuelve g_{\alpha \beta}u^{\alpha}v^{\beta}. Podemos pensar una 1-forma \boldsymbol{\tilde{k}} como un tensor de tipo \binom{0}{1}, o 1 vez covariante, pues a partir de un vector \boldsymbol{v} nos devuelve el escalar \langle \boldsymbol{\tilde{k}},\boldsymbol{v}\rangle. Sus componentes son \tilde{k}_{\alpha}. Por el contrario, podemos pensar un vector \boldsymbol{v} como un tensor de tipo \binom{1}{0}, o 1 vez contravariante, pues a partir de una 1-forma \boldsymbol{\tilde{k}} nos devuelve el escalar \langle \boldsymbol{\tilde{k}}, \boldsymbol{v} \rangle. Las componentes de \boldsymbol{v} son v^{\alpha} = \langle \boldsymbol{w}^{\alpha},\boldsymbol{v} \rangle.

Finalmente, es útil recordar que, por una parte, los tensores de tipo \binom{m}{n} no necesitan de las métricas para existir y, por otra, que en el caso de existir, entonces gracias a ésta, todos los tensores de rango m+n son equivalentes entre si, es decir, el mismo tensor lo podemos escribir de 2^{m+n} maneras en función de donde aparece cada índice, si arriba o abajo, contravariante o covariante. Por ejemplo, si T es un tensor de tipo \binom{1}{2} podemos transformalo a uno de tipo \binom{0}{3} de la siguiente manera:

T^{\alpha}_{\beta \gamma} = \boldsymbol{T}(\boldsymbol{w}^{\alpha},\boldsymbol{e}_{\beta},\boldsymbol{e}_{\gamma}) = \boldsymbol{T}(g^{\delta \alpha}\boldsymbol{e}_{\delta},\boldsymbol{e}_{\beta},\boldsymbol{e}_{\gamma}) = g^{\delta \alpha} \boldsymbol{T}(\boldsymbol{e}_\delta,\boldsymbol{e}_\beta,\boldsymbol{e}_\gamma) = g^{\delta \alpha}T_{\delta \beta \gamma}.

Desde la geometria diferencial y Riemanniana, subir y bajar índices equivale a construir el isomorfismo musical, \sharp y \flat ,entre el fibrado tangente TM y el cotangente T^*M de una variedad M inducido por una métrica g. Básicamente son contracciones entre el tensor métrico o el co-tensor métrico con un tensor arbitrario. Permite, por ejemplo, la generalización del gradiente.

diciembre 2017
L M X J V S D
« Ago    
 123
45678910
11121314151617
18192021222324
25262728293031