You are currently browsing the category archive for the ‘Matemáticas’ category.

Después de muchísimo tiempo sin escribir, vuelvo con este post que resume todo el trabajo que hemos realizado durante este último año.

En julio del año pasado nos enteramos de un artículo publicado por X. Yang and R. Mittal, de la Johns Hopkins University, en el que aceleraban de manera espectacular el algoritmo de Jacobi y lo utilizaban para resolver ecuaciones en derivadas parciales de tipo elíptico.

A pesar del relativo eco mediático que tuvo, y aunque aceleraba muchísimo Jacobi, seguía sin ser competitivo con los métodos utilizados actualmente para solucionar este tipo de ecuaciones. Sin embargo, como prometía en cuanto a su sencillez desde el punto de vista tanto de implementación como de paralelización, decidimos trabajar un tiempo sobre el mismo.

Finalmente, en junio presentamos unos proceedings en el CEDYA 2015 (pag. 733) y hace tres semanas enviamos un paper a JCP, donde presentamos una serie de mejoras realizadas que permiten, tal y como allí comentamos, que el SRJ sea prácticamente competitivos en ejecución secuencial con los algoritmos utilizados actualmente.

Por un lado, su inmediata implementación (todos tenemos un Jacobi implementado de nuestro curso de métodos numéricos, y es trivial convertirlo en un SRJ 🙂 ) hace pensar que mucha gente que no tenga y necesite un resolvedor elíptico eficiente sin invertir mucho esfuerzo en su implementación quiera utilizarlo. Por otro, su trivial paralelización, por ejemplo en entornos GPU, nos hace pensar en su extraordinario potencial en el ámbito de la supercomputación.

En la página de nuestro grupo de investigación tenemos disponibles todos los esquemas SRJ presentados en el paper.

¡Disfrutenlo!

Anuncios

En el artículo técnico What would a binary black hole merger look like?  se simula, mediante técnicas de ray tracing, como vería un observador externo el merge de dos agujeros negros (del artículo y del sitio web de los autores están sacadas prácticamente todas las imágenes).

Si estamos mirando hacia algún sitio, digamos:

ClockTower-400x300

y pasa un agujero negro frente a nosotros, lo primero que se nos viene a la cabeza es la siguiente imagen:

ClockTower-400x300b

ya que como de un agujero negro no puede escapar nada, ni la luz, pensamos que veríamos una simple esfera negra tapando un trozo de nuestra visión. Sin embargo, una imagen mas realista de lo que veríamos es:

ClockTower_BH-400x300debido a la curvatura que experimentan los rayos de luz por la curvatura del espacio-tiempo que genera el agujero negro: efecto de lente gravitacional.

Colocando una imagen de fondo más métrica, así es como se verían los espacios de Minkowski, Schwarzschild y Kerr.

analyticSpacetimesSi en lugar de un agujero negro tenemos un sistema binario de agujeros negros de igual masa, entonces tendríamos:

bbhSystem

Finalmente, una animación del merge:

El viernes 13 de noviembre de 2014 murió Alexander Grothendieck, un genio matemático a la altura de los mas grandes, capaz de reformular el solo toda una área de las matemáticas desde sus mismos cimientos: la geometría algebraica. Sobre el escribí lo siguiente en esta entrada que dediqué al premio Abel del año pasado:

Alexander Grothendieck es el siguiente personaje importante en el área, pues reescribió la geometría algebraica subsumiendo el concepto de variedad algebraica en el de esquema, entendiendo que cualquier anillo conmutativo puede ser un objeto geométrico, dotando de esta manera, de un nuevo lenguaje y una fundamentación, mucho mas potente que la de Weil, para la geometría algebraica.

A pesar de su abstracción, o precisamente por ella, esta última visión es la que ha permanecido, pues permite conectar dos mundos, el de la geometría algebraica y el de la álgebra conmutativa.

Una anécdota que he leído en estos días, que muestran el despertar de su genialidad es la siguiente. Cuando empezó a trabajar en su tesis doctoral bajo la supervisión de Laurent Schwartz y Jean Dieudonné, dos de los mejores matemáticos de la época, le entregaron una lista con 14 problemas para que escogiera uno en el que trabajar los tres o cuatro años siguientes. A los pocos meses los había resuelto todos.

Cosechas y Siembras. Reflexiones y testimonios sobre un pasado de matemático, obra de su puño y letra y, según sus propias palabras:

…una reflexión sobre mí mismo y mi vida. Por eso mismo también es un testimonio…

da una visión de la profundidad e inmensidad de su pensamiento. Algunos extractos de la misma:

.Sus doce “grandes ideas” (su aportación a las matemáticas):

  1. Productos tensoriales topológicos y espacios nucleares.
  2. Dualidad “continua” y “discreta” (categorías derivadas, “seis operaciones”).
  3. Yoga Riemann-Roch-Grothendieck (teoría K, relación con la teoría de intersecciones).
  4. Esquemas.
  5. Topos.
  6. Cohomología étal y l-ádica.
  7. Motivos y grupo de Galois motívico (\otimes-categorías de Grothendieck).
  8. Cristales y cohomología cristalina, yoga “coeficientes de De Rham”, “coeficientes de Hodge”…
  9. “Algebra topológica”:\infty-campos, derivadores; formalismo cohomológico en los topos, como inspiración para una nueva álgebra homotópica.
  10. Topología moderada.
  11. Yoga de geometría algebraica anabeliana, teoría de Galois-Teichmüller.
  12. Punto de vista “esquemático” o “aritmético” en los poliedros regulares y las configuraciones regulares de todo tipo.

.Metaforas:

“Habló sobre dos tipos de matemáticos, el que abriría una nuez con martillo y cincel y el que, pacientemente, la sumerge en agua y espera, con el paso de los meses, a que el líquido penetre y se pueda partir cerrando la mano sin más”.

“Lo ignoto que quiere ser conocido se me presentaba como una porción de tierra, o una dura magra, resistiéndose a la penetración… El océano avanza insensible en silencio, nada parece suceder, nada se mueve, el agua está tan lejos que apenas puedes escucharlo… Y sin embargo finalmente rodea la sustancia resistente”.

.Importancia de las preguntas, nociones y puntos de vista frente a las respuestas propiamente dichas:

Es realmente por el descubrimiento sobre todo de preguntas nuevas, de nociones nuevas, o aún de puntos de vista nuevos, o de nuevos “mundos”, que mi obra matemática ha resultado ser fecunda, más que por las “soluciones” que he aportado a preguntas ya planteadas. Esta pulsión muy fuerte que me lleva hacia el descubrimiento de las buenas preguntas, más que hacia el de las respuestas, y hacia el descubrimiento de buenas nociones y enunciados, mucho más que hacia el de las demostraciones, son otros trazos “yin” fuertemente marcados en mi aproximación a las matemáticas

.Sensibilidad en el manejo del lenguaje e invención de nueva terminología:

Desde un punto de vista cuantitativo, a lo largo de mis años de productividad intensa, mi trabajo se ha concretado sobre todo en unas doce mil páginas de publicaciones, bajo la forma de artículos, monografías o seminarios, y por medio de centenares, si no miles, de nociones nuevas que han entrado en el patrimonio común, con los nombres mismos que les había dado al despejarlas [dégagées]. En la historia de las matemáticas, creo ser aquel que ha introducido en nuestra ciencia el mayor número de nociones nuevas y, a la vez, ser aquel que se ha visto llevado a inventar el mayor número de nombres nuevos, para expresar esas nociones con delicadeza y de la manera más sugestiva posible.

Un resumen en  http://finiterank.com/docs/grothendieck-zalamea.pdf:

Una sitio web dedicado a Grothendieck: http://www.grothendieckcircle.org/

Un problema puede ser más o menos difícil de resolver. La complejidad computacional pretende clasificar los problemas computacionales desde el punto de vista de cuanto cuesta resolverlos. Y para cuantificar esta dificultad de una manera teórica y objetiva, lo que se hace es ver como varia el tiempo de resolución con el tamaño de la entrada.

De esta manera, un problema perteneciente a la clase P, un problema resoluble en tiempo polinómico, es un problema cuyo tiempo de resolución es una función polinómica del tamaño de la entrada (si crece poco el tamaño de la entrada, crece poco el tiempo que tardamos en resolverlo, lo cual hace que estos problemas sean tratables).

¿Y qué quiere decir que un problema es de clase NP? Son aquellos problemas para los que es difícil encontrar una solución pero fácil verificarla, es decir, no se conoce ningún algoritmo polinómico que nos encuentre una solución pero si lo existe para comprobar que efectivamente lo es.

Para aclarar la definición anterior, pongamos un ejemplo: el problema del viajante de comercio. Dado un conjunto de ciudades, encontrar una ruta para un comerciante de manera que pase por TODAS las ciudades UNA ÚNICA vez. Este problema se traduce en encontrar un ciclo Hamiltoniano en un grafo. Un crecimiento moderado en el número de ciudades implicadas hace que el problema se vuelva prácticamente intratable. Sin embargo, si nos dan ya una solución, una ruta, es prácticamente trivial comprobar si es un ciclo hamiltoniano o no.

El problema P vs NP pretende demostrar si estos dos conjuntos son o no el mismo.

Dos definiciones complementarias para terminar.

  • Un problema es NP-completo si es un problema NP de los mas difíciles, dejémoslo ahí. El problema anterior es un problema de esta clase. Una propiedad que tienen estos problemas es que son todos equivalentes, desde el punto de vista de complejidad computacional, entre si, es decir, existe un algoritmo que traduce cualquier problema NP-completo en cualquier otro en tiempo polinómico. De manera que, si lográramos un algoritmo en P que resolviera uno de ellos, tendríamos un algoritmo en P para todos ellos (traducimos el otro problema al primero en tiempo polinómico, lo resolvemos en tiempo polinómico y traducimos la solución a una solución del original en tiempo polinómico).
  • Un problema es NP-duro si es, al menos, tan difícil como NP.

 

 

¿Cuantas veces necesito doblar un papel por la mitad para conseguir la altura de la Estatua de la Libertad (93m) o de la Torre Eiffel (324m)? Pues, aunque parezca increíble, superaríamos estas alturas con doblar un folio (supongamos 0.1mm) 20 veces o 22 veces respectivamente. Es más, con doblarlo 32 veces y ponernos encima, la Estación Espacial Internacional (ISS) orbitaría por debajo de nuestra posición. Y ésto es debido al vertiginoso crecimiento de la función exponencial: cada vez que doblamos el papel, doblamos la altura anterior.

A continuación, un ejemplo práctico de 13 dobleces llevado a cabo en el MIT:

Como puede verse, no resulta sencillo doblar un papel sobre si mismo tantas veces :-). Sin embargo, a efectos de la altura conseguida, pensemos simplemente en cortar y apilar…

Un número es perfecto si es la suma de sus divisores propios. Un divisor a de un número b es un divisor propio si a divide a b (a|b) pero b no divide a a (b \nmid a). Dicho de otra manera, son todos los divisores de un número excepto el mismo.

De esta manera, 6 = 1 + 2 + 3 es el primer número perfecto, ya que 1, 2, 3 son sus divisores propios. El siguiente número perfecto es el 28.

Dos cuestiones abiertas sobre estos números: ¿Existen infinitos números perfectos? ¿Existen números perfectos impares?

En el segundo libro de Paenza, se explica una manera de multiplicar cualquier par de números conociendo únicamente la tabla del dos. Necesitamos adicionalmente saber dividir por dos y saber sumar. Es es método ruso: vamos dividiendo el primer número por dos olvidándonos de los restos hasta llegar a 1, escribiéndolos en columna. En otra columna hacemos lo contrario con otro número: lo multiplicamos por dos hasta tener tantos elementos como en la columna anterior. Finalmente, sumamos los elementos de la segunda columna cuyo compañero en la primera sea un número impar y ¡voilà!

Este método, junto con el método egipcio, son métodos de multiplicación por duplicación.

¿Por qué funcionan? Básicamente estamos escribiendo  uno de los número en binario y aprovechando que la suma es distributiva 🙂

¡Cuánto tiempo sin escribir nada! Estoy bastante liado con el trabajo y he dejado abandonado el blog. Para que no se diga, una entrada breve: premio Leelavati.

En el penúltimo ICM en Hyderabad, la India, se estableció el premio Leelavati destinado a premiar la divulgación de las matemáticas. Ese año recibió el premio Simon Singh (leí su libro “El enigma de Fermat” en su día y vi el documental “El último teorema de Fermat” que dirigió y fue emitido en la BBC, ambos fantásticos).

En el ICM de este verano el galardonado fue el argentino Adrián Paenza. Aquí su memorable charla pública para la clausura del evento, y aquí sus libros, gratuitos para el disfrute personal, repletos de maravillosa matemática lúdica.

Acabo de descubrir, en esta entrada de Tao, unos vídeos sobre los medallistas Fields del 2014.

Añado también una imagen curiosa sobre los medallistas de la IMO del 1995, donde lograron medalla de oro tanto Mirzakhani (7) como Avila (24). También aparece con medalla de plata Ben J. Green (46):

imo1995

Finalmente, un software creado por Hairer para Mac.

El operador Laplaciano en dos dimensiones y en coordenadas polares queda:

\Delta := \partial_{rr} + \frac{1}{r} \partial_r + \frac{1}{r^2} \partial_{\theta \theta},

por lo que la ecuación de Laplace \Delta u = 0 en un sector circular [r_1,r_2] \times [0,2\pi] se escribe:

\partial_{rr} + \frac{1}{r} \partial_r + \frac{1}{r^2} \partial_{\theta \theta} = 0.

Aplicando el método de separación de variables, podemos plantear ahora una solución

u(r,\theta) = R(r)\Theta(\theta),

que es producto de dos funciones dependientes cada una de una sola de las variables. Sustituyendo la solución en la ecuación de Laplace, llegamos a:

Para empezar, consideremos el operador Laplaciano. El principio del máximo para el Laplaciano nos dice que si \Delta u \geq 0 en una región \Omega acotada, entonces el máximo de la función u se alcanza obligatoriamente en \partial \Omega:

\max_{x \in \Omega} u(x) = \max_{y \in \partial \Omega}u(y).

De la misma manera, si lo que sabemos es que \Delta u \leq 0 en \Omega (principio del mínimo), entonces:

\min_{x \in \Omega} u(x) = \min_{y \in \partial \Omega}u(y).

Razonamos para la desigualdad estricta \Delta u > 0 (la igualdad también es cierta pero el razonamiento requiere de métodos perturbativos). Si x_0 es un punto donde se alcanza su máximo, entonces debe ser un punto crítico, por lo que sus derivadas primeras deben anularse \nabla u(x_0) = 0 y sus derivadas segundas puras deben ser no positivas u_{ii} \leq 0. De esta manera, llegamos a la contradicción, ya que

\Delta u(x_0) = \sum_i u_{ii}(x_0) \leq 0.

En particular, si una función es armónica \Delta u = 0, cumple tanto el principio del máximo como el del mínimo de manera que los extremos de toda función armónica definida sobre un dominio acotado se alcanzan en la frontera.

El hecho anterior es crucial para la unicidad de solución, si existe,  de la ecuaciónes elíptica:

\Delta u = f, x \in \Omega con u = g, x \in \delta \Omega,

ya que si existieran dos u_1 y u_2, y consideraramos la diferencia v=u_1 - u_2, esta es solución del problema:

\Delta v = 0, x \in \Omega con v = 0, x \in \delta \Omega,

siendo, por tanto, v armónica y tomando sus extremos en \partial \Omega. Pero como v es 0 en la frontera, tanto el máximo como el mínimo son nulos, y v solo puede ser la función identicamente nula, por lo que u_1 = u_2.

Existen criterios para la unicidad de operadores mas complejos. En el libro “Maximum Principles in Differential Equations” de M.H. Protter y H.F. Weinberger se trata el tema en profundidad.

 

Una función f:\Omega \rightarrow \mathbb{C} es diferenciable en z_0 \in \Omega si existe el límite:

f'(z_0) := \lim_{h \rightarrow 0} \frac{f(z_0 + h) - f(z_0)}{h},

donde f'(z_0) es la derivada de f(z) en z_0.

Diremos que f(z) es holomorfa en z_0 \in \Omega si es diferenciable en todos los puntos de un entorno \mathcal{U}(z_0). Diremos que es holomorfa  en \Omega si lo es \forall z \in \Omega. Diremos que una función es entera cuando \Omega = \mathbb{C}.

Si la función

f(z) = u(x,y) + i \, v(x,y)

es diferenciable en z_0 = (x_0,y_0) \in \Omega, existen u_x, u_y, v_x, v_y y cumplen las ecuaciones de Cauchy-Riemann (C-R):

u_x = v_y y u_y = -v_x.

Notar que para hablar de funciones holomorfas en relación a funciones de variable real, necesitamos funciones de dos variables cumpliendo C-R.

El principio del módulo máximo, que es un teorema, nos dice que si f(z) es holomorfa y no constante en un dominio abierto y conexo (si no es conexo, el teorema es válido para cada componente conexa) \Omega entonces |f(z)| no tiene ningún máximo en \Omega.

Tenemos dos corolarios:

  1. si \Omega acotado y f es contínua en \bar{\Omega}, entonces f asume el máximo en la frontera \partial \Omega,
  2. si tomamos g:=1/f tenemos el principio del módulo mínimo y su correspondiente versión en compactos.

Finalmente, diremos que una función u es armónica si cumple la ecuación de Laplace \Delta u = 0. Es fácil demostrar que si f (z)= u(x,y) + i \, v(x,y) es holomorfa en \Omega entonces u(x,y) y v(x,y) son armónicas en \Omega. Se las llama armónicas conjugadas.

Existe una versión del principio del módulo máximo para funciones armónicas: si u(x,y) es armónica en un dominio simplemente conexo \Omega, entonces la función u(x,y) no tiene ningún máximo en \Omega.

Una PDE cuasilineal de segundo orden en dos variables independientes x e y con función incógnita u(x,y) tiene la forma general:

a(x,y,u,u_x,u_y) u_{xx} + 2b(x,y,u,u_x,u_y) u_{xy}

+ c(x,y,u,u_x,u_y)u_{yy} + d(x,y,u,u_x,u_y) = 0,

donde a,b,c,d son funciones contínuas en un subconjunto abierto \mathcal{V} de \mathcal{U} \times \mathbb{R}^3 de las variables (x,y,u,u_x,u_y) donde \mathcal{U} es un abierto de \mathbb{R}^2.

Definimos el discriminante como

D(v^0) := a(v^0)c(v^0) - b^2(v^0),

con v^0 = (x^0,y^0,u^0,u_x^0,u_y^0) \in \mathcal{V}. Diremos que la ecuación anterior es:

  1. Elíptica en el punto v^0 si D(v^0) > 0,
  2. Parabólica en el punto v^0 si D(v^0) = 0,
  3. Hiperbólica en el punto v^0 si D(v^0) < 0.

Por tanto, el carácter elíptico, parabólico o hiperbólico depende no solo del punto (x^0,y^0) \in \mathcal{U} sino también del valor de una solución y sus derivadas parciales de primer orden en dicho punto. Además, en el caso de que la parte principal, los coeficientes que multiplican a las derivadas de segundo orden, sea de coeficientes constantes, el carácter se mantiene en todos los puntos donde esté definida la función d.

De esta manera, la ecuación de Laplace u_{tt} + u_{xx} = 0 es elíptica en todos los puntos; la ecuación del calor u_t - u_{xx} =0 es parabólica; y la ecuación de ondas u_{tt} - u_{xx} = 0 es hiperbólica.

En el caso de tener n variables independientes x_1, x_2, \ldots, x_n entonces la ecuación general tiene la forma:

a^{ij}(x_1,\ldots, x_n, u, u_{x_1},\ldots, u_{x_n}) u_{x_i, x_j} + \ldots =0,

donde a^{ij} es la parte principal y el resto son terminos de menor orden. En este caso, el carácter de la ecuación depende de la signatura de los valores propios de la matriz de coeficientes:

  1. Elíptica si los valores propios son todos positivos o todos negativos,
  2. Parabólica cuando todos los valores propios son positivos o negativos excepto uno que es zero,
  3. Hiperbólica si todos los valores propios son positivos excepto uno que es negativo o todos son negativos excepto uno que es positivo.

Finalmente, toda ecuación se puede reducir a una forma canónica, que corresponde a uno de los tres tipos clásicos: Laplace, calor u ondas.

Tenemos:

  1. \bar{r} := \frac{r}{r+a}
  2. \Delta := \frac{(1-\bar{r})^4}{a^2} \partial_{\bar{r}\bar{r}} + \frac{(1-\bar{r})^4}{a^2}\frac{2}{\bar{r}} \partial_{\bar{r}}
  3. \Delta \Theta_X = 6 \pi [ \frac{(1-\bar{r})^2}{a} \partial_{\bar{r}} S^*_{\bar{r}} + \frac{1 - \bar{r}}{a} \frac{2}{\bar{r}} S^*_{\bar{r}} + \frac{1-\bar{r}}{a} \frac{\cot \theta}{\bar{r}} S^*_{\theta}]
  4. \Delta X^{\bar{r}} = 8 \pi S^*_{\bar{r}} - \frac{1}{3} \frac{(1-\bar{r})^2}{a} \partial_{\bar{r}} \Theta_X
  5. \hat{A}^{\bar{r}\bar{r}} = \frac{4}{3}\frac{(1-\bar{r})^2}{a} \partial_{\bar{r}} X^{\bar{r}} - \frac{2}{3}2\frac{1-\bar{r}}{a}\frac{1}{\bar{r}} X^{\bar{r}}
  6. \Delta \Theta_\beta = \frac{3}{2}[\frac{(1-\bar{r})^4}{a^2} \partial_{\bar{r}\bar{r}}u + \frac{(1-\bar{r})^3(2-\bar{r})}{2a^2} \frac{4}{\bar{r}}u + \frac{(1-\bar{r})^2}{a^2} \frac{2}{\bar{r}^2}u]

con:

u:=\alpha \psi^{-6} \hat{A}^{\bar{r}\bar{r}}

y:

\{\frac{2 (\bar{r}_i - 1)^4 (\bar{r_i} - (\bar{r}_{i+1} - \bar{r}_i))}{a^2 (\bar{r}_i - \bar{r}_{i-1}) \bar{r_i} (\bar{r}_{i+1} - \bar{r}_{i-1} )},

\frac{(\bar{r}_i - 1)^2 (\frac{-2}{h_\theta^2 \bar{r}_i^2} + \frac{(\bar{r}_i - 1)^2 ((r_{i+1}-r_i)-(r_i-r_{i-1})-2)}{(r_{i+1}-r_i)(r_i - r_{i-1})} + \frac{-2 \csc^2 \theta_i}{h_\varphi^2 \bar{r}_i^2})}{a^2},

\frac{2 (\bar{r}_i - 1)^4 ((\bar{r}_{i} - \bar{r}_{i-1}) + \bar{r_i})}{a^2 (\bar{r}_{i+1} - \bar{r}_i) \bar{r}_i (\bar{r}_{i+1} - \bar{r}_{i-1} )} \}

Para aproximar la primera y segunda derivada de una función f(x) mediante tres puntos estamos habituados a las fórmulas:

f'(x) \approx \frac{f_{i+1}-f_{i-1}}{2h} = \frac{-1}{2h} f_{i-1} + \frac{1}{2h} f_{i+1},

f''(x) \approx \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2} = \frac{1}{h^2} f_{i-1} + \frac{-2}{h^2} f_i + \frac{1}{h^2} f_{i+1}.

En estas expresiones estamos asumiendo que los puntos están equiespaciados una distancia h. ¿Cómo quedan las formulas en el caso de que la distancia entre los dos primeros puntos lx sea diferente a la distancia entre los dos últimos rx? Existen varias maneras de calcularlo, por ejemplo mediante interpolación de Lagrange como ya hicimos en este post, y quedan:

f'(x) \approx \frac{-rx}{lx(lx+rx)} f_{i-1} + \frac{rx - lx}{lx rx} f_i + \frac{lx}{(lx+rx)rx} f_{i+1},

f''(x) \approx \frac{2}{lx(lx+rx)} f_{i-1} + \frac{-2}{lx rx} f_i + \frac{2}{(lx+rx)rx} f_{i+1}.

Geometría euclideana, geometría analítica, geometría afín, geometría proyectiva, geometría elíptica, geometría hiperbólica, geometría simplectica, geometría Riemanniana, geometría Lorentziana, geometría conforme, geometría diferencial, geometría lineal, geometría algebraica

¿Qué es, en esencia, una geometría? Felix Klein en su Programa de Erlangen nos lo aclara: es el estudio de los invariantes bajo un grupo de transformaciones, donde grupo se refiere a la estructura algebraica y no al mero conjunto.

Cuando en matemáticas estudiamos una estructura algebraica determinada, un objeto en la Teoria de categorías, supongamos el espacio afín para fijar ideas, a continuación siempre se estudian las aplicaciones entre éstas, los morfismo en la Teoría de categorías, que conservan la estructura en realidad, aplicaciones entre las estructuras que respetan ciertos invariantes característicos de estas estructuras (la idea es que obtendremos el mismo valor para el invariante si trabajamos en la estructura de salida y finalmente transformamos a la estructura  que si primero transformamos para trabajar en el destino), en particular aquellas cuyos conjuntos de salida y de llegada coinciden, los endomorfismos, que en el caso que nos ocupa, por ejemplo, serían las transformaciones afines o afinidades. De esta manera, la geometría afín es el estudio de los invariantes por las traslaciones.

Es mas, no es la geometría la que induce el grupo, sino el grupo el que genera la geometría: dame el grupo de transformaciones admisible y te construiré su geometría.

Ya comentamos en este post el formalismo Lagrangiano (coordenadas generalizadas de posiciones y velocidades). Vamos a comentar ahora la imagen Hamiltoniana.

Como en el caso anterior, utilizamos coordenadas de posición generalizadas q^1, \ldots, q^n que ahora irán acompañadas de las coordenadas de los momentos generalizados p^1, \ldots, p^n. Para una única partícula libre,  el momento no es mas que las velocidad multiplicada por la masa, y en general, siempre podemos obtenerlo a partir del Lagrangiano:

p_r = \frac{\partial}{\partial \dot{q}^r} \mathcal{L},

que nos proporciona las coordenadas para el espacio cotangente y poder escribir el covector como p_a dq^a.

Con todo ésto, la función Hamiltoniana se define como:

\mathcal{H} := \mathcal{H}(q^1,\ldots,q^n;p_1,\ldots,p_n),

y una manera de obtenerlo a partir del Lagrangiano es:

\mathcal{H} = [\dot{q}^r \frac{\partial}{\partial\dot{q}^r} - 1 ] \mathcal{L},

reescrita en términos de los momentos (y no las velocidades, que son las que aparecen en \mathcal{L}).

Al pasar al mundo cuántico, podemos identificar los momentos con los operadores diferenciales introduciendo el factor \hbar := \frac{h}{2 \pi}:

p_a = i \hbar \frac{\partial}{\partial x^a},

para el momento asociado a la posición x^a.

Y no solo eso. Si consideramos las variables de los momentos p_a como primarias y queremos obtener las de posición x^a a partir de éstas, exite una simetría muy precisa entre el espacio de momentos y el espacio de posiciones, de manera que tenemos:

x^a = i \hbar \frac{\partial}{\partial p_a},

donde la transformada de Fourier juega un papel importante también ahora.

En ambos casos, podemos obtener la regla de conmutación canónica que relaciona posiciones y momentos lineales:

p_a x^a - x^a p_a = i \hbar \delta^a_b.

Dos funciones continuas f,g: X \rightarrow Y son homotópicas si podemos transformar continuamente una en otra, es decir, si existe una función continua:

H:[0,1] \times X \rightarrow Y,

tal que H(0,\mathbf{x})=f(\mathbf{x}) y H(1,\mathbf{x})=g(\mathbf{x}).

A continuación, dos animaciones que hemos creado donde podemos ver estas deformaciones continuas, mediante combinaciones convexas, de curvas (1-variedades) y superficies (2-variedades):

Recordemos lo ya expuesto en este post: que en las coordenadas esferoidales prolatas (\mu, \nu, \varphi), las dos primeras (\mu, \nu) provienen de las coordenadas elípticas, donde \mu \in ]0,+\infty[ y \nu \in ]0,2\pi[, mientras que la última \varphi \in ]0,2\pi[ proviene de rotarlas alrededor del eje que une los focos.

Compactificamos la primera coordenada mediante \boxed{\mu = b \tan \frac{\pi \bar{\mu}}{2}}.

El Laplaciano y las fuentes, en estas coordenadas y con esta compactificación, utilizando una nueva función en Mathematica que nos lo calcula todo, quedan:

lap_ellComNor2

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

s1_ellComNor2

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

s21_ellComNor2

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

A1x_ellComNor2

A2x_ellComNor2

A3x_ellComNor2

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

Las coordenas elípticas vienen definidas por:

x = a \, \mbox{cosh} \mu \cos \nu,

y = a \, \mbox{sinh} \mu \sin \nu,

donde las líneas coordenadas son elípses e hipérbolas:

Para pasar a coordenadas tridimensionales tenemos tres opciones:

  1. extruir a lo largo del eje z: coordenadas cilíndricas elípticas,
  2. rotar alrededor del eje que une los dos focos: coordenadas esferoidales prolatas,
  3. rotar alrededor del eje perpendicular al eje anterior y que separa ambos focos: coordenadas esferoidales oblatas.

A continuación un gráfico donde se ven combinadas:

sphBiSph

La salida ahora para un tensor dos veces contravariante en la base ortonormal queda:

CovDerTen2BiSphCom1,

Para primera ecuación:

\boxed{\Delta \Theta_\beta = \frac{3}{2} \mathcal{D}_i \mathcal{D}_j (\alpha \psi^{-6} \hat{A}^{ij}) },

definimos como antes

V^i := \mathcal{D}_j \alpha \psi^{-6} \hat{A}^{ij},

de manera que la ecuación original la reescribimos como

\Delta \Theta_\beta = \frac{3}{2} \mathcal{D}_i V^i,

De esta manera, en nuestras coordenadas obtenemos:

\Delta \Theta_\beta = \frac{3}{2} \mathcal{D}_i V^i = \frac{3}{2} (\mathcal{D}_{\xi} V^{\xi} + \mathcal{D}_{\bar{\eta}} V^{\bar{\eta}} + \mathcal{D}_{\varphi} V^{\varphi}) =

div_biSphComNor1

donde

V^{\xi} = \mathcal{D}_{\xi} (\alpha \psi^{-6} \hat{A}^{\xi \xi}) + \mathcal{D}_{\bar{\eta}} ( \alpha \psi^{-6} \hat{A}^{\xi \bar{\eta}} ) + \mathcal{D}_{\varphi} ( \alpha \psi^{-6} \hat{A}^{\xi \varphi} ),

V^{\bar{\eta}} = \mathcal{D}_{\xi} (\alpha \psi^{-6} \hat{A}^{\bar{\eta} \xi}) + \mathcal{D}_{\bar{\eta}} ( \alpha \psi^{-6} \hat{A}^{\bar{\eta} \bar{\eta}} ) + \mathcal{D}_{\varphi} ( \alpha \psi^{-6} \hat{A}^{\bar{\eta} \varphi} ),

V^{\varphi} = \mathcal{D}_{\xi} (\alpha \psi^{-6} \hat{A}^{\varphi \xi}) + \mathcal{D}_{\bar{\eta}} ( \alpha \psi^{-6} \hat{A}^{\varphi \bar{\eta}} ) + \mathcal{D}_{\varphi} ( \alpha \psi^{-6} \hat{A}^{\varphi \varphi} ),

que desarrollando las covariantes quedan:

V^{\xi} = \frac{(1 - \bar{r})^2}{a} \partial_{\bar{r}} (\alpha \psi^{-6} \hat{A}^{\bar{r} \bar{r}}) +

+ \frac{1 - \bar{r}}{a \bar{r}} [ \partial_{\theta} ( \alpha \psi^{-6} \hat{A}^{\bar{r} \theta}) + \alpha \psi^{-6} \hat{A}^{\bar{r} \bar{r}} - \alpha \psi^{-6} \hat{A}^{\theta \theta} ] +

+ \frac{1 - \bar{r}}{a \bar{r}} [ \csc \theta \partial_{\varphi} ( \alpha \psi^{-6} \hat{A}^{\bar{r} \varphi}) + \alpha \psi^{-6} \hat{A}^{\bar{r} \bar{r}} + \cot \theta \alpha \psi^{-6} \hat{A}^{\bar{r} \theta} - \alpha \psi^{-6} \hat{A}^{\varphi \varphi}] ),

V^{\bar{\eta}} = \frac{(1 - \bar{r})^2}{a} \partial_{\bar{r}} (\alpha \psi^{-6} \hat{A}^{\theta \bar{r}}) +

+ \frac{1 - \bar{r}}{a \bar{r}} [ \partial_{\theta} ( \alpha \psi^{-6} \hat{A}^{\theta \theta}) + 2 \alpha \psi^{-6} \hat{A}^{\bar{r} \theta} ] +

+ \frac{1 - \bar{r}}{a \bar{r}} [ \csc \theta \partial_{\varphi} ( \alpha \psi^{-6} \hat{A}^{\theta \varphi}) + \alpha \psi^{-6} \hat{A}^{\bar{r} \theta} + \cot \theta \alpha \psi^{-6} \hat{A}^{\theta \theta} - \cot \theta \alpha \psi^{-6} \hat{A}^{\varphi \varphi} ] ),

V^{\varphi} = \frac{(1 - \bar{r})^2}{a} \partial_{\bar{r}} (\alpha \psi^{-6} \hat{A}^{\bar{r} \bar{r}}) +

+ \frac{1 - \bar{r}}{a \bar{r}} [ \partial_{\theta} ( \alpha \psi^{-6} \hat{A}^{\bar{r} \theta}) + \alpha \psi^{-6} \hat{A}^{\bar{r} \bar{r}} - \alpha \psi^{-6} \hat{A}^{\theta \theta} ] +

+ \frac{1 - \bar{r}}{a \bar{r}} [ \csc \theta \partial_{\varphi} ( \alpha \psi^{-6} \hat{A}^{\bar{r} \varphi}) + \alpha \psi^{-6} \hat{A}^{\bar{r} \bar{r}} + \cot \theta \alpha \psi^{-6} \hat{A}^{\bar{r} \theta} - \alpha \psi^{-6} \hat{A}^{\varphi \varphi}] ),

que combinandolo con la anterior, queda:

Finalmente, las ecuaciones:

\boxed{\Delta \beta^i = 2\mathcal{D}_j ( \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} },

con las que procederemos de manera similar a como hemos hecho con las X^i, es decir, calculando las fuentes en una base, haciendo un cambio de base que las desacople (cartesianas), resolviendolas de manera independiente y volviendo a la base original:

S^i_\beta (\bar{r},\theta,\varphi) := 2\mathcal{D}_j ( \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}_i \Theta_{\beta},

que quedan:

S^{\xi}_\beta= 2 \big [ \mathcal{D}_{\xi} (\alpha \psi^{-6} \hat{A}^{\xi \xi}) + \mathcal{D}_{\bar{\eta}} (\alpha \psi^{-6} \hat{A}^{\xi \bar{\eta}}) + \mathcal{D}_{\varphi} (\alpha \psi^{-6} \hat{A}^{\xi \varphi}) \big ] - \frac{1}{3} \mathcal{D}_{\xi} \Theta_\beta,

S^{\bar{\eta}}_\beta = 2 \big [ \mathcal{D}_{\xi} (\alpha \psi^{-6} \hat{A}^{\bar{\eta} \xi}) + \mathcal{D}_{\bar{\eta}} (\alpha \psi^{-6} \hat{A}^{\bar{\eta} \bar{\eta}}) + \mathcal{D}_{\varphi} (\alpha \psi^{-6} \hat{A}^{\bar{\eta} \varphi}) \big ] - \frac{1}{3} \mathcal{D}_{\bar{\eta}} \Theta_\beta,

S^{\varphi}_\beta = 2 \big [ \mathcal{D}_{\xi} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{x}}) + \mathcal{D}_{\bar{y}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{y}}) + \mathcal{D}_{\bar{z}} (\alpha \psi^{-6} \hat{A}^{\bar{y} \bar{z}}) \big ] - \frac{1}{3} \mathcal{D}_{\varphi} \Theta_\beta,

donde las derivadas covariantes del tensor dos veces contravariante:

T^{ij}:=\alpha \psi^{-6} \hat{A}^{ij}

son como acabamos de hacer en la ecuación anterior y las del escalar \Theta_\beta es como ya hicimos con las X^i:

S^{\xi} = 2 V^{\xi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{3a} \partial_{\xi} \Theta_{\beta},

S^{\bar{\eta}} = 2 V^{\bar{\eta}} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{3a} \frac{(\bar{\eta} - 1)^2}{b} \partial_{\bar{\eta}} \Theta_{\beta},

S^{\varphi} = 2 V^{\varphi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{3a} \csc \xi \partial_{\varphi} \Theta_{\beta}.

Hacemos a continuación el cambio:

[S^{\xi}(\xi,\bar{\eta},\varphi),S^{\bar{\eta}}(\xi,\bar{\eta},\varphi),S^{\varphi}(\xi,\bar{\eta},\varphi)] \rightarrow

\rightarrow [S^x(\xi,\bar{\eta},\varphi), S^y(\xi,\bar{\eta},\varphi), S^z(\xi,\bar{\eta},\varphi)],

y resolvemos:

\Delta \beta^{x} = S^{x}

\Delta \beta^{y} = S^{y}

\Delta \beta^{z} = S^{z},

deshaciendo el cambio:

[\beta^x(\xi,\bar{\eta},\varphi), \beta^y(\xi,\bar{\eta},\varphi), \beta^z(\xi,\bar{\eta},\varphi)] \rightarrow

\rightarrow [\beta^{\xi}(\xi,\bar{\eta},\varphi),\beta^{\bar{\eta}}(\xi,\bar{\eta},\varphi),\beta^{\varphi}(\xi,\bar{\eta},\varphi)]

para terminar.

Recordemos lo ya expuesto en este post: que en las coordenadas biesféricas (\xi, \eta, \varphi), las dos primeras (\xi, \eta) provienen de las coordenadas bipolares, donde la primera indica el ángulo entre las dos rectas que unen nuestro punto con los dos focos que necesitamos para determinar las bipolares y la segundo es el logartimo del ratio entre la longitud de estas dos rectas, mientras que la última proviene de rotarlas alrededor del eje que une los focos.

Compactificamos la segunda coordenada mediante \boxed{\eta = \frac{b \bar{\eta}}{1 - \bar{\eta}}}.

El Laplaciano, en estas coordenadas y con esta compactificación, queda:

\Delta = \frac{(\cos \xi - \mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}})^2}{a^2} \big [ \partial_{\xi \xi} + \csc \xi \frac{-1 + \cos \xi \, \mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}}}{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1-\bar{\eta}} - \cos \xi} \partial_{\xi}

+\frac{(\bar{\eta} - 1)^4}{b^2} \partial_{\bar{\eta} \bar{\eta}} + \frac{(\bar{\eta} - 1)^2}{b^2} (2(\bar{\eta}-1) -\frac{b \, \mbox{\scriptsize sinh} \frac{b \bar{\eta}}{1 - \bar{\eta}}}{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}) \partial_{\bar{\eta}} + \csc^2 \xi \partial_{\varphi} \big ],

las derivadas covariantes de covectores (1-formas):

CovDer_BiSphComNor1

y las fuentes:

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

\Delta \Theta_X = 6 \pi f^{ji} \mathcal{D}_i S^*_j = 6 \pi ( \mathcal{D}_{\xi} S^*_{\xi} + \mathcal{D}_{\bar{\eta}} S^*_{\bar{\eta}} + \mathcal{D}_{\varphi} S^*_{\varphi} ) =

s1_biSphComNor1

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

Pasando la derivada contravariante a covariante mediante la métrica, queda:

\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X.

Definimos ahora

S_X^i := 8 \pi f^{ij} S^*_j - \frac{1}{3} f^{ik} \mathcal{D}_k \Theta_X,

de manera que:

S_X^{\xi} = 8 \pi f^{\xi j} S^*_j - \frac{1}{3} f^{\xi k}\mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\xi} - \frac{1}{3} \mathcal{D}_{\xi} \Theta_X =

= 8 \pi S^*_{\xi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \partial_{\xi} \Theta_X

S_X^{\bar{\eta}} = 8 \pi f^{\bar{\eta} j} S^*_j - \frac{1}{3} f^{\bar{\eta} k} \mathcal{D}_{k} \Theta_X = 8 \pi S^*_{\bar{\eta}} - \frac{1}{3} \mathcal{D}_{\bar{\eta}} \Theta_X =

= 8 \pi S^*_{\bar{\eta}} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \frac{(\bar{\eta} - 1)^2}{b} \partial_{\bar{\eta}} \Theta_X

S_X^{\varphi} = 8 \pi f^{\varphi j} S^*_j - \frac{1}{3} f^{\varphi k} \mathcal{D}^{k} \Theta_X = 8 \pi S^*_{\varphi} - \frac{1}{3} \mathcal{D}_{\varphi} \Theta_X =

= 8 \pi S^*_{\varphi} - \frac{\mbox{\scriptsize cosh} \frac{b \bar{\eta}}{1 - \bar{\eta}} - \cos \xi}{a} \csc \xi \partial_{\varphi} \Theta_X

En este punto tenemos que el vector

(S_X^{\xi}(\xi,\bar{\eta},\varphi),S_X^{\bar{\eta}}(\xi,\bar{\eta},\varphi),S_X^{\varphi}(\xi,\bar{\eta},\varphi))

expresado en la base que resulta de normalizar la base coordenada \{ \partial_{\xi}, \partial_{\bar{\eta}}, \partial_{\varphi} \}. Lo que hacemos ahora es expresar este vector en la nueva base \{ \partial_x, \partial_y, \partial_z \}, de manera que obtenemos

(S_X^{x}(\xi,\bar{\eta},\varphi),S_X^{y}(\xi,\bar{\eta},\varphi),S_X^{z}(\xi,\bar{\eta},\varphi)).

y como es esta base las ecuaciones están desacopladas y \Theta_X es un campo escalar, resolvemos independientemente:

\Delta X^{x} = S_X^{x},

\Delta X^{y} = S_X^{y},

\Delta X^{z} = S_X^{z}.

Finalmente, con el cambio de base inverso, calculamos a partir de (X^{x},X^{y},X^{z}) el vector (X^{\xi},X^{\bar{\eta}},X^\varphi) .

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

Necesitamos ahora la derivada covariante de un vector (hasta ahora habían coincidido las derivadas covariantes de vectores y covectores, pero en este caso no):

CovDer_BiSphComNor1_vec

volvemos a pasar las derivadas contravariantes a covariantes:

\hat{A}^{ij} = f^{im} \mathcal{D}_m X^j + f^{jn} \mathcal{D}_n X^i - \frac{2}{3} f^{ij} \mathcal{D}_k X^{k}

y obtenemos:

\hat{A}^{\xi \xi} = f^{\xi m} \mathcal{D}_m X^{\xi} + f^{\xi n} \mathcal{D}_n X^{\xi} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( 2 \mathcal{D}_{\xi} X^{\xi} - \mathcal{D}_{\bar{\eta}} X^{\bar{\eta}} - \mathcal{D}_{\varphi} X^{\varphi}) =

A11_biSphComNor1

\hat{A}^{\xi \bar{\eta}} = f^{\xi m} \mathcal{D}_m X^{\bar{\eta}} + f^{\bar{\eta} n} \mathcal{D}_n X^{\xi} = \mathcal{D}_{\xi} X^{\bar{\eta}} + \mathcal{D}_{\bar{\eta}} X^{\xi} =

A12_biSphComNor1

\hat{A}^{\xi \varphi} = f^{\xi m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\xi} = \mathcal{D}_{\xi} X^{\varphi} + \mathcal{D}_{\varphi} X^{\xi} =

A13_biSphComNor1

\hat{A}^{\bar{\eta} \bar{\eta}} = f^{\bar{\eta} m} \mathcal{D}_m X^{\bar{\eta}} + f^{\bar{\eta} n} \mathcal{D}_n X^{\bar{\eta}} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\xi} X^{\xi} + 2 \mathcal{D}_{\bar{\eta}} X^{\bar{\eta}} - \mathcal{D}_{\varphi} X^{\varphi}) =

A22_biSphComNor1

\hat{A}^{\bar{\eta} \varphi} = f^{\bar{\eta} m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\bar{\eta}} = \mathcal{D}_{\bar{\eta}} X^{\varphi} + \mathcal{D}_{\varphi} X^{\bar{\eta}} =

A23_biSphComNor1

\hat{A}^{\varphi \varphi} = f^{\varphi m} \mathcal{D}_m X^{\varphi} + f^{\varphi n} \mathcal{D}_n X^{\varphi} - \frac{2}{3} \mathcal{D}_k X^{k} = \frac{2}{3}( - \mathcal{D}_{\bar{r}} X^{\bar{r}} - \mathcal{D}_{\theta} X^{\theta} +2 \mathcal{D}_{\varphi} X^{\varphi}) =

A33_biSphComNor1

Las dos ecuaciones no lineales correspondientes al factor conforme \psi y al lapse \alpha, como no contienen derivadas covariantes, quedan como las teniamos:

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

Finalmente, para el shift \beta y su ecuación auxiliar tenemos:

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

que trataremos en el siguiente post.

diciembre 2017
L M X J V S D
« Ago    
 123
45678910
11121314151617
18192021222324
25262728293031