You are currently browsing the category archive for the ‘Teoría de Números’ category.

Un número es perfecto si es la suma de sus divisores propios. Un divisor a de un número b es un divisor propio si a divide a b (a|b) pero b no divide a a (b \nmid a). Dicho de otra manera, son todos los divisores de un número excepto el mismo.

De esta manera, 6 = 1 + 2 + 3 es el primer número perfecto, ya que 1, 2, 3 son sus divisores propios. El siguiente número perfecto es el 28.

Dos cuestiones abiertas sobre estos números: ¿Existen infinitos números perfectos? ¿Existen números perfectos impares?

No hay que confundir los dos conceptos del título del post. Por un lado tenemos claramente definido el concepto de serie convergente: una serie es convergente si la sucesión de las sumas parciales tiene límite. Por otro, existen métodos de sumación, que pretenden extender, de manera consistente, la asignación de un valor de suma a una serie divergente en el sentido anterior.

Sin entrar en criterios de convergencia de series, existe una manera muy sencilla de saber si una serie diverge: si la sucesión de términos no tiende a cero, entonces la serie diverge:

\lim_{n \rightarrow \infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n = \infty.

Por ejemplo, las series:

\sum_{n=1}^{\infty} (-1)^{n-1}n = 1 - 2 + 3 - \ldots

\sum_{n=1}^{\infty} n = 1 + 2 + 3 + \ldots

son divergentes, ya que la sucesión de sus correspondientes sumas parciales (1,-1,2,-2\ldots; 1,3,6,10,\ldots ) no tiene límite o, por el criterio anterior, \lim_{n \rightarrow \infty} (-1)^{n-1} n \neq 0 y \lim_{n \rightarrow \infty} n \neq 0.

Sin embargo, podemos asignarle un valor a esta suma (jugando apropiadamente con los términos :-)). En el primer caso, ya Euler encontró que:

\sum_{n=1}^{\infty} n = 1 - 2 +3 -4 + \ldots = \frac{1}{4},

y posteriormente se establecieron métodos bien definidos para encontrar sumas generalizadas de series divergentes.

En el segundo caso, podemos utilizar la extensión analítica (de funciones analíticas y sus extensiones comenté algo en este post) de la función zeta de Riemann (una nota curiosa aquí):

\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \ldots,

ya que nuestra serie no es mas que \zeta(-1) y, como se puede demostrar que:

\zeta(-s) = \frac{B_{s+1}}{s+1},

donde B_n son los números de Bernoulli, entonces tenemos que:

\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + \ldots = -\frac{1}{12},

En este post, Tao da una interpretación matemáticamente consistente de lo que son estos valores.

Sorpresa máxima al abrir hoy el Reader de WordPress: ¡Tao hablando de la hipótesis de Riemann en su blog!. Deja claro al principio del post que simplemente va a poner junto todo lo que se conoce al respecto, sin aportar nada nuevo. ¡Pero es Tao y es la hipótesis de Riemann! ¿Va a quedar sólo en eso? Expectación máxima. ¡Dios nos coja confesados! 😀

agosto 2017
L M X J V S D
« Jul    
 123456
78910111213
14151617181920
21222324252627
28293031