You are currently browsing the tag archive for the ‘agurejo negro Kerr’ tag.

Cuando hablamos de soluciones analíticas de las ecuaciones de Einstein hablamos de los agujeros negros estacionarios en rotación y sin carga eléctrica (J \neq 0 y Q = 0). A esta solución analítica se la conoce  como métrica de Kerr.

Procedemos a buscar calcular los símbolos de Christoffel, la conexión de Levi-Civita y las geodésicas de la métrica de Kerr:

g = - (1-\frac{2Mr}{\Sigma})dt \otimes dt - \frac{4aMr\sin^2\theta}{\Sigma}dt \tilde{\otimes} d\varphi +

+ \frac{\Sigma}{\Delta}dr \otimes dr + \Sigma d\theta \otimes d\theta + (r^2+a^2+\frac{2a^2Mr\sin^2\theta}{\Sigma})sin^2\theta d\varphi \otimes d\varphi

donde a:=\frac{J}{M}, \Delta:= r^2 - 2Mr + a^2 y \Sigma = r^2 + a^2 \cos^2 \theta. El agujero negro está rotando en la dirección +\varphi y el espín está restringido al rango 0 \leq \frac{a}{M} \leq 1. Notar que recuperamos la métrica de Schwarzschild cuando a=0.

Modificamos ligeramente el programa que teniamos de manera que nos permita trabajar con metricas sobre variedades en 4 dimensiones (si el índices ic empieza en ib nos ahorramos los cálculos simétricos):


Simbolos[] := 
For[ia = 1, ia <= 4, ia++, 
  For[ib = 1, ib <= 4, ib++,
    For[ic = 1, ic <= 4, ic++,
      r = 0;
      For[ii = 1, ii <= 4, ii++,
        r = r + 
            FullSimplify[
                         1/2*Inverse[g][[ii]][[ia]]*(
                         D[g[[ii]][[ib]], x[[ic]]] + 
                         D[g[[ii]][[ic]], x[[ib]]] - 
                         D[g[[ib]][[ic]], x[[ii]]])
            ]
      ];
      Print["Gamma[", ia, ",", ib, ",", ic, "] = ", r]
    ]
  ]
]

Introducimos la métrica como siempre:

\left(  \begin{array}{cccc}  -1+\frac{2 M \text{x2}}{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}} & 0 & 0 & -\frac{2 J \text{x2} \text{Sin}[\text{x3}]^2}{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}} \\  0 & \frac{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}}{\frac{J^2}{M^2}-2 M \text{x2}+\text{x2}^2} & 0 & 0 \\  0 & 0 & \text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2} & 0 \\  -\frac{2 J \text{x2} \text{Sin}[\text{x3}]^2}{\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}} & 0 & 0 & \text{Sin}[\text{x3}]^2 \left(\frac{J^2}{M^2}+\text{x2}^2+\frac{2 J^2 \text{x2} \text{Sin}[\text{x3}]^2}{M \left(\text{x2}^2+\frac{J^2 \text{Cos}[\text{x3}]}{M^2}\right)}\right)  \end{array}  \right)

y en un momento obtenemos:

\Gamma^{1}_{\alpha \beta}:

Gamma1

\Gamma^2_{\alpha \beta}:

Gamma2

\Gamma^3_{\alpha \beta}:

Gamma3

\Gamma^4_{\alpha \beta}:

Gamma4

Calculamos ahora las ecuaciones de las geodesicas partiendo del hecho de que conocemos los símbolos de Christoffel. Como ya vimos, la ecuación en coordenadas a partir de estos es:

\frac{d^2}{dt^2}x^i + \Gamma^i_{jk} \frac{d}{dt}x^j \frac{d}{dt}x^k = 0.

Si nos fijamos, la estructura es sencilla: una ecuación por cada variable y, en esta, utilizamos los símbolos de Christoffel que la tienen como coordenada contravariante y cada símbolo acompañado del producto de las derivadas primeras de las variables que aparecen como covariantes.

Obviamente, y debido al tamaño de las expresiones, solo vamos a escribir de manera explícita alguna. Así pues, las ecuaciones de las geodésicas son:

\begin{cases} \ddot{t} + \ldots = 0 \\ \ddot{r} + \ldots = 0 \\ \ddot{\theta} + \ldots = 0 \\ \ddot{\varphi} + \ldots = 0 \end{cases}

donde, por ejemplo, para \theta tenemos (algunas expresiones no caben pero al pinchar y arrastrar se ven completas):

\ddot{\theta} -

- \frac{J^2 M^5 r \text{Sin}[\theta]}{\left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^3} \dot{t}^2 + \frac{J^2 M^2 \text{Sin}[\theta]}{2 \left(J^2+M^2 r (-2 M+r)\right) \left(M^2 r^2+J^2 \text{Cos}[\theta]\right)} \dot{r}^2 - \frac{J^2 \text{Sin}[\theta]}{2 M^2 r^2+2 J^2 \text{Cos}[\theta]} \dot{\theta}^2 -

-\frac{\left(J^2+M^2 r^2\right) \text{Cos}[\theta] \left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^2 \text{Sin}[\theta]+4 J^2 M^3 r \text{Cos}[\theta] \left(M^2 r^2+J^2 \text{Cos}[\theta]\right) \text{Sin}[\theta]^3+J^4 M^3 r \text{Sin}[\theta]^5}{\left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^3} \dot{\varphi}^2 +

+ \frac{J M^4 r \left(4 M^2 r^2 \text{Cos}[\theta]+J^2 (3+\text{Cos}[2 \theta])\right) \text{Sin}[\theta]}{\left(M^2 r^2+J^2 \text{Cos}[\theta]\right)^3} \dot{t} \dot{\varphi} + \frac{r}{r^2+\frac{J^2 \text{Cos}[\theta]}{M^2}} \dot{r} \dot{\theta} = 0

Anuncios
octubre 2019
L M X J V S D
« Oct    
 123456
78910111213
14151617181920
21222324252627
28293031  
Anuncios