You are currently browsing the tag archive for the ‘aproximación derivada primera’ tag.

Para aproximar la primera y segunda derivada de una función f(x) mediante tres puntos estamos habituados a las fórmulas:

f'(x) \approx \frac{f_{i+1}-f_{i-1}}{2h} = \frac{-1}{2h} f_{i-1} + \frac{1}{2h} f_{i+1},

f''(x) \approx \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2} = \frac{1}{h^2} f_{i-1} + \frac{-2}{h^2} f_i + \frac{1}{h^2} f_{i+1}.

En estas expresiones estamos asumiendo que los puntos están equiespaciados una distancia h. ¿Cómo quedan las formulas en el caso de que la distancia entre los dos primeros puntos lx sea diferente a la distancia entre los dos últimos rx? Existen varias maneras de calcularlo, por ejemplo mediante interpolación de Lagrange como ya hicimos en este post, y quedan:

f'(x) \approx \frac{-rx}{lx(lx+rx)} f_{i-1} + \frac{rx - lx}{lx rx} f_i + \frac{lx}{(lx+rx)rx} f_{i+1},

f''(x) \approx \frac{2}{lx(lx+rx)} f_{i-1} + \frac{-2}{lx rx} f_i + \frac{2}{(lx+rx)rx} f_{i+1}.

junio 2020
L M X J V S D
1234567
891011121314
15161718192021
22232425262728
2930