You are currently browsing the tag archive for the ‘compactificar’ tag.

Seguimos utilizando la misma función mencionada aquí.

Compactificaremos de dos manera diferentes:

\boxed{\boxed{x = a \, \mbox{arctanh} \, \bar{x}, y = b \, \mbox{arctanh} \, \bar{y}, z = c \, \mbox{arctanh} \, \bar{z} }}

Para la base \{ \partial_{\bar{x}}, \partial_{\bar{y}}, \partial_{\bar{z}}\}, los símbolos de Christoffel y las derivadas covariantes quedan (utilizamos X,Y,Z en Mathematica para representar \bar{x},\bar{y},\bar{z}):

ChrSym_CarCom1

CovDer_CarCom1

Para la base \{ \frac{|-1+\bar{x}^2|}{a} \partial_{\bar{x}}, \frac{|-1+\bar{y}^2|}{b} \partial_{\bar{y}}, \frac{|-1+\bar{z}^2|}{c} \partial_ {\bar{z}}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_CarComNor1

CovDer_CarComNor1

\boxed{\boxed{x = a \tan \frac{\pi \bar{x}}{2}, b \tan \frac{\pi \bar{y}}{2}, c \tan \frac{\pi \bar{z}}{2} }}

Para la base \{ \partial_{\bar{x}}, \partial_{\bar{y}}, \partial_{\bar{z}}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_CarCom2

CovDer_CarCom2

Para la base \{ \frac{1+\cos (\pi \bar{x})}{a \pi} \partial_{\bar{x}}, \frac{1 + \cos(\pi \bar{y})}{b \pi} \partial_{\bar{y}}, \frac{1 + \cos(\pi \bar{z})}{c \pi} \partial_ {\bar{z}}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_CarComNor2

CovDer_CarComNor2

Anuncios

Seguimos utilizando la misma función mencionada aquí.

Compactificaremos de tres manera diferentes:

\boxed{\boxed{r = \frac{a \bar{r}}{1 - \bar{r}}}} (y no \frac{a \bar{r}}{a - \bar{r}} como escribimos en este post)

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan (\bar{r} lo representamos mediante R en Mathematica):

ChrSym_SphCom

CovDer_SphCom

Para la base \{ \frac{(1-\bar{r})^2}{a} \partial_{\bar{r}}, \frac{1-\bar{r}}{a \bar{r}} \partial_{\theta}, \frac{1-\bar{r}}{a \bar{r}}\csc \theta \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor

CovDer_SphComNor

\boxed{\boxed{r=a\, \mbox{arctanh} \bar{r}}}

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_SphCom2

CovDer_SphCom2

Para la base \{ \frac{1-\bar{r}^2}{a}\partial_{\bar{r}}, \frac{1}{a\, \mbox{\scriptsize arctanh}\, \bar{r}} \partial_{\theta}, \frac{\csc \theta}{a\, \mbox{\scriptsize arctanh} \,\bar{r}} \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor2

CovDer_SphComNor2

\boxed{\boxed{r = a \tan \frac{\pi \bar{r}}{2}}}

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_SphCom3

CovDer_SphCom3

Para la base \{ \frac{1+\cos \pi \bar{r}}{a \pi} \partial_{\bar{r}}, \frac{\cot \frac{\pi \bar{r}}{2}}{a} \partial_{\theta}, \frac{\cot \frac{\pi \bar{r}}{2}}{a} \csc \theta \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor3

CovDer_SphComNor3

noviembre 2017
L M X J V S D
« Ago    
 12345
6789101112
13141516171819
20212223242526
27282930