You are currently browsing the tag archive for the ‘coordenadas cartesianas’ tag.

Hasta hace unos dias me creía que los únicos sistemas de coordenadas existentes eran los archiconocidos sistemas cartesiano y polar en dos dimensiones y  cartesiano, cilíndrico y esférico en tres dimensiones. Menuda sorpresa me lleve al descubrir que existen muchos mas. En esta entrada comentaré algunos sistemas de coordenadas alternativos para dos dimensiones y dedicaré otra para los tridimensionales.

Coordenadas parabólicas:

Es un sistema donde las lineas coordenadas son parábolas confocales. Lo que tenemos son dos conjuntos de parábolas:

2y = \frac{x^2}{\sigma^2} - \sigma^2, abiertas hacia el eje +y,

2y = -\frac{x^2}{\tau^2} + \tau^2, abiertas hacia el eje -y,

todas con foco en el origen. De esta manera, las coordenadas parabólicas (\sigma,\tau) vienen determinadas mediante las ecuaciones:

x = \sigma \tau

y = \frac{1}{2}(\tau^2 - \sigma^2)

En la siguiente imagen, vemos la apariencia de este sistema curvilineo:

ParCor2D

Iremos comentando en nuevos posts mas sistemas de coordenadas: coordenadas hiperbólicas, coordenadas elípticas, coordenadas bipolares, etc.

Las ecuaciones de la aproximación CFC de las ecuaciones de Einstein en el formalismo 3+1 expresadas de forma covariante son:

\Delta X^i = 8 \pi f^{ij} S_j^* - \frac{1}{3} \mathcal{D}^i (\mathcal{D}_j X^j),

\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}}{8} \psi^{-7},

\Delta (\alpha \psi) = 2 \pi \psi^{-2} (E^* + 2S^*) (\alpha \psi) + 7 \psi^{-8} \frac{f_{il} f_{im} \hat{A}^{lm} \hat{A}^{ij}}{8} (\alpha \psi),

\Delta \beta^i = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij}) - \frac{1}{3} \mathcal{D}^i (\mathcal{D}_j \beta^j),

donde \hat{A}^{ij} \approx (LX)^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}.

En coordenadas cartesianas, (x,y,z), tenemos:

(\partial_{xx} + \partial_{yy} + \partial_{zz}) X^x = 8 \pi S_x^* - \frac{1}{3} \partial_{xx} X^x,

(\partial_{xx} + \partial_{yy} + \partial_{zz}) X^y = 8 \pi S_y^* - \frac{1}{3} \partial_{yy} X^y,

(\partial_{xx} + \partial_{yy} + \partial_{zz}) X^z = 8 \pi S_z^* - \frac{1}{3} \partial_{zz} X^z,

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \psi = -2 \pi E^* \psi^{-1} - \frac{As}{8} \psi^{-7},

(\partial_{xx} + \partial_{yy} + \partial_{zz}) (\alpha \psi) = 2 \pi \psi^{-2} (E^* + 2S^*) (\alpha \psi) + 7 \psi^{-8} \frac{As}{8} (\alpha \psi),

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \beta^x = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{xj}) - \frac{1}{3} \mathcal{D}^x (\mathcal{D}_j \beta^j),

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \beta^y = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{yj}) - \frac{1}{3} \mathcal{D}^y (\mathcal{D}_j \beta^j),

(\partial_{xx} + \partial_{yy} + \partial_{zz}) \beta^z = \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{zj}) - \frac{1}{3} \mathcal{D}^z (\mathcal{D}_j \beta^j),

con

\hat{A}^{xx} = \partial_x X^x + \partial_x X^x - \frac{2}{3} \partial_k X^k f^{xx},

\hat{A}^{xy} = \partial_x X^y + \partial_y X^x,

\hat{A}^{xz} = \partial_x X^z + \partial_z X^x,

\hat{A}^{yy} = \partial_y X^y + \partial_y X^y - \frac{2}{3} \partial_k X^k f^{yy},

\hat{A}^{yz} = \partial_y X^z + \partial_z X^y,

\hat{A}^{zz} = \partial_z X^z + \partial_z X^z - \frac{2}{3} \partial_k X^k f^{zz},

y

As:=(A^{xx})^2+(A^{xy})^2+(A^{xz})^2+(A^{yy})^2+(A^{yz})^2+(A^{zz})^2.

En coordenadas esféricas (r,\theta,\varphi), las ecuaciones quedan:

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) X^r =

= 8 \pi f^{r j} S_j^* - \frac{1}{3} \mathcal{D}^r (\mathcal{D}_j X^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) X^\theta =

= 8 \pi f^{\theta j} S_j^* - \frac{1}{3} \mathcal{D}^\theta (\mathcal{D}_j X^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) X^\varphi =

= 8 \pi f^{\varphi j} S_j^* - \frac{1}{3} \mathcal{D}^\varphi (\mathcal{D}_j X^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \psi = -2 \pi E^* \psi^{-1} - \frac{As}{8} \psi^{-7},

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) (\alpha \psi) =

= 2 \pi \psi^{-2} (E^* + 2S^*) (\alpha \psi) + 7 \psi^{-8} \frac{As}{8} (\alpha \psi),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \beta^r =

= \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{r j}) - \frac{1}{3} \mathcal{D}^r (\mathcal{D}_j \beta^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \beta^\theta =

= \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{\theta j}) - \frac{1}{3} \mathcal{D}^\theta (\mathcal{D}_j \beta^j),

(\partial_{rr} + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta\theta} + \frac{\cot \theta}{r^2} \partial_\theta + \frac{\cot^2 \theta}{r^2} \partial_{\varphi\varphi}) \beta^\varphi =

\mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{\varphi j}) - \frac{1}{3} \mathcal{D}^\varphi (\mathcal{D}_j \beta^j),

con:

\hat{A}^{rr} = \mathcal{D}^r X^r + \mathcal{D}^r X^r - \frac{2}{3} \mathcal{D}_k X^k f^{rr},

\hat{A}^{r\theta} = \mathcal{D}^r X^\theta + \mathcal{D}^\theta X^r,

\hat{A}^{r\varphi} = \mathcal{D}^r X^\varphi + \mathcal{D}^\varphi X^r,

\hat{A}^{\theta\theta} = \mathcal{D}^\theta X^\theta + \mathcal{D}^\theta X^\theta - \frac{2}{3} \mathcal{D}_k X^k f^{\theta\theta},

\hat{A}^{\theta\varphi} = \mathcal{D}^\theta X^\varphi + \mathcal{D}^\varphi X^\theta,

\hat{A}^{\varphi\varphi} = \mathcal{D}^\varphi X^\varphi + \mathcal{D}^\varphi X^\varphi - \frac{2}{3} \mathcal{D}_k X^k f^{\varphi\varphi},

y

As:=(A^{rr})^2+(A^{r\theta})^2+(A^{r\varphi})^2+(A^{\theta\theta})^2+(A^{\theta\varphi})^2+(A^{\varphi\varphi})^2.

Cuando trabajamos en \mathbb{K}^n, con \mathbb{K}=\mathbb{R} o \mathbb{K} = \mathbb{C}, podemos hacerlo en distintos sistemas de coordenadas. Por ejemplo, en \mathbb{R}^2 puedo trabajar en coordenadas cartesianas (x,y) o en coordenadas polares (r,\theta); 0 en \mathbb{R}^3 lo puedo hacer en cartesianas (x,y,z), en cilíndricas (r,\theta,z) o en esféricas (r,\theta,\varphi).

En el cálculo vectorial, en la geometría diferencial o en las ecuaciones en derivadas parciales, lo que hacemos es trabajar con el concepto de diferenciación y lo hacemos en el espacio tangente, que como tiene estructura de espacio vectorial, dispone del concepto de base:

(x,y) \longrightarrow \{ \partial_x, \partial_y \},

(r,\theta) \longrightarrow \{ \partial_r, \partial_\theta \},

(x,y,z) \longrightarrow \{ \partial_x, \partial_y, \partial_z \},

(r,\theta,z) \longrightarrow \{ \partial_r, \partial_\theta, \partial_z \},

(r,\theta,\varphi) \longrightarrow \{ \partial_r, \partial_\theta, \partial_\varphi \},

y es aquí donde tienen sentido las bases holonómicas, todas las anteriores, los cambios de base que comentamos en este post. Las compactificaciones de aquí, por contra, solo tienen sentido al especificar el sistema de coordenadas.

Para nuestras ecuaciones en derivadas parciales, el primer paso será fijar que coordenadas utilizamos en la variedad (compactificaciones) y, hecho esto, determinar que base (holonómica, ortonormal, etc.) queremos utilizar en su fibrado tangente. Por ejemplo, podríamos tener:

(r, \theta, \varphi) \longrightarrow (\partial_r, \frac{1}{r} \partial_\theta, \frac{1}{r \sin \theta} \partial_\varphi),

porque nos resulta comodo tener una bases ortonormal en el espacio tangente.

En n dimensiones, el operador Laplaciano queda como:

\Delta u= \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}u

en coordenadas cartesianas, y como:

\Delta u = \frac{\partial}{\partial r^2}u + \frac{n-1}{r}\frac{\partial}{\partial r}u + \frac{1}{r^2}\Delta_{S^{n-1}}u

en esféricas, donde \Delta_{S^{n-1}} es el operador de Laplace-Beltrami, una generalización del Laplaciano para funciones definidas sobre variedades,  en la (n-1)-esfera (S^{n-1}), el operador Laplaciano esférico.

Un punto es un tensor sin índices, un vector es un tensor con 1 índice, una matriz es un tensor con 2 índices, etc. Cuando discreticemos una PDE en n dimensiones, llegaremos a un tensor con n índices y 2n tensores con n-1 índices para las condiciones en las fronteras.

agosto 2017
L M X J V S D
« Jul    
 123456
78910111213
14151617181920
21222324252627
28293031