You are currently browsing the tag archive for the ‘coordenadas cilíndricas’ tag.

Las coordenas elípticas vienen definidas por:

x = a \, \mbox{cosh} \mu \cos \nu,

y = a \, \mbox{sinh} \mu \sin \nu,

donde las líneas coordenadas son elípses e hipérbolas:

Para pasar a coordenadas tridimensionales tenemos tres opciones:

  1. extruir a lo largo del eje z: coordenadas cilíndricas elípticas,
  2. rotar alrededor del eje que une los dos focos: coordenadas esferoidales prolatas,
  3. rotar alrededor del eje perpendicular al eje anterior y que separa ambos focos: coordenadas esferoidales oblatas.

Ya tenemos nuestra función lista para realizar todos estos cálculos de manera automática.

Para la base \{ \partial_r, \partial_{\theta}, \partial_z\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_Cyl

CovDer_Cyl

Para la base \{ \partial_r, \frac{1}{r} \partial_{\theta}, \partial_ z\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_CylNor

CovDer_CylNor

Cuando trabajamos en \mathbb{K}^n, con \mathbb{K}=\mathbb{R} o \mathbb{K} = \mathbb{C}, podemos hacerlo en distintos sistemas de coordenadas. Por ejemplo, en \mathbb{R}^2 puedo trabajar en coordenadas cartesianas (x,y) o en coordenadas polares (r,\theta); 0 en \mathbb{R}^3 lo puedo hacer en cartesianas (x,y,z), en cilíndricas (r,\theta,z) o en esféricas (r,\theta,\varphi).

En el cálculo vectorial, en la geometría diferencial o en las ecuaciones en derivadas parciales, lo que hacemos es trabajar con el concepto de diferenciación y lo hacemos en el espacio tangente, que como tiene estructura de espacio vectorial, dispone del concepto de base:

(x,y) \longrightarrow \{ \partial_x, \partial_y \},

(r,\theta) \longrightarrow \{ \partial_r, \partial_\theta \},

(x,y,z) \longrightarrow \{ \partial_x, \partial_y, \partial_z \},

(r,\theta,z) \longrightarrow \{ \partial_r, \partial_\theta, \partial_z \},

(r,\theta,\varphi) \longrightarrow \{ \partial_r, \partial_\theta, \partial_\varphi \},

y es aquí donde tienen sentido las bases holonómicas, todas las anteriores, los cambios de base que comentamos en este post. Las compactificaciones de aquí, por contra, solo tienen sentido al especificar el sistema de coordenadas.

Para nuestras ecuaciones en derivadas parciales, el primer paso será fijar que coordenadas utilizamos en la variedad (compactificaciones) y, hecho esto, determinar que base (holonómica, ortonormal, etc.) queremos utilizar en su fibrado tangente. Por ejemplo, podríamos tener:

(r, \theta, \varphi) \longrightarrow (\partial_r, \frac{1}{r} \partial_\theta, \frac{1}{r \sin \theta} \partial_\varphi),

porque nos resulta comodo tener una bases ortonormal en el espacio tangente.

Aunque siempre podemos hacer cambios de coordenadas, vamos a ver como quedan los esquemas de diferencias finitas en sistemas no rectangulares: coordenadas cilíndricas, (\rho,\phi, z), y coordenadas esféricas, (r,\theta,\phi). Nos centraremos en la ecuación de Poisson aunque la técnica se puede extender de manera inmediata a cualquier tipo de PDE.

En coordenadas cilíndricas podemos escribir:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial \rho^2}u + \frac{1}{\rho}\frac{\partial}{\partial \rho}u + \frac{1}{\rho^2}\frac{\partial^2}{\partial \phi^2}u + \frac{\partial^2}{\partial z^2} u = f,

que podemos discretizar como:

\frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{(\Delta \rho)^2} +

+ \frac{1}{\rho_{i,j,k}}\frac{u_{i+1,j,k}-u_{i-1,j,k}}{2\Delta \rho} +

+ \frac{1}{\rho_{i,j,k}^2} \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(\Delta \phi)^2} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(\Delta z)^2} = f_{i,j,k}

En coordenadas esféricas tenemos:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial r^2}u + \frac{2}{r} \frac{\partial}{\partial r}u + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}u + \frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta}u + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \phi^2}u = f

que podemos discretizar como:

\frac{u_{i-1,j,k-2u_{i,j,k}+u_{i+1,j,k}}}{(\Delta r)^2} +

+ \frac{2}{r_{i,j,k}} \frac{u_{i+1,j,k}+u_{i-1,j,k}}{2\Delta r} +

+ \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(r_{i,j,k} \Delta \theta)^2} +

+ \frac{1}{r_{i,j,k}^2 \sin \phi_{i,j,k}} \frac{u_{i,j+1,k}-u_{i,j-1,k}}{2 \Delta \phi} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(r_{i,j,k} \sin \phi_{i,j,k} \Delta \phi)^2} = f_{i,j,k}

junio 2017
L M X J V S D
« Feb    
 1234
567891011
12131415161718
19202122232425
2627282930