You are currently browsing the tag archive for the ‘coordenadas esféricas’ tag.

Seguimos utilizando la misma función mencionada aquí.

Compactificaremos de dos manera diferentes:

\boxed{\boxed{x = a \, \mbox{arctanh} \, \bar{x}, y = b \, \mbox{arctanh} \, \bar{y}, z = c \, \mbox{arctanh} \, \bar{z} }}

Para la base \{ \partial_{\bar{x}}, \partial_{\bar{y}}, \partial_{\bar{z}}\}, los símbolos de Christoffel y las derivadas covariantes quedan (utilizamos X,Y,Z en Mathematica para representar \bar{x},\bar{y},\bar{z}):

ChrSym_CarCom1

CovDer_CarCom1

Para la base \{ \frac{|-1+\bar{x}^2|}{a} \partial_{\bar{x}}, \frac{|-1+\bar{y}^2|}{b} \partial_{\bar{y}}, \frac{|-1+\bar{z}^2|}{c} \partial_ {\bar{z}}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_CarComNor1

CovDer_CarComNor1

\boxed{\boxed{x = a \tan \frac{\pi \bar{x}}{2}, b \tan \frac{\pi \bar{y}}{2}, c \tan \frac{\pi \bar{z}}{2} }}

Para la base \{ \partial_{\bar{x}}, \partial_{\bar{y}}, \partial_{\bar{z}}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_CarCom2

CovDer_CarCom2

Para la base \{ \frac{1+\cos (\pi \bar{x})}{a \pi} \partial_{\bar{x}}, \frac{1 + \cos(\pi \bar{y})}{b \pi} \partial_{\bar{y}}, \frac{1 + \cos(\pi \bar{z})}{c \pi} \partial_ {\bar{z}}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_CarComNor2

CovDer_CarComNor2

Seguimos utilizando la misma función mencionada aquí.

Compactificaremos de tres manera diferentes:

\boxed{\boxed{r = \frac{a \bar{r}}{1 - \bar{r}}}} (y no \frac{a \bar{r}}{a - \bar{r}} como escribimos en este post)

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan (\bar{r} lo representamos mediante R en Mathematica):

ChrSym_SphCom

CovDer_SphCom

Para la base \{ \frac{(1-\bar{r})^2}{a} \partial_{\bar{r}}, \frac{1-\bar{r}}{a \bar{r}} \partial_{\theta}, \frac{1-\bar{r}}{a \bar{r}}\csc \theta \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor

CovDer_SphComNor

\boxed{\boxed{r=a\, \mbox{arctanh} \bar{r}}}

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_SphCom2

CovDer_SphCom2

Para la base \{ \frac{1-\bar{r}^2}{a}\partial_{\bar{r}}, \frac{1}{a\, \mbox{\scriptsize arctanh}\, \bar{r}} \partial_{\theta}, \frac{\csc \theta}{a\, \mbox{\scriptsize arctanh} \,\bar{r}} \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor2

CovDer_SphComNor2

\boxed{\boxed{r = a \tan \frac{\pi \bar{r}}{2}}}

Para la base \{ \partial_{\bar{r}}, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

ChrSym_SphCom3

CovDer_SphCom3

Para la base \{ \frac{1+\cos \pi \bar{r}}{a \pi} \partial_{\bar{r}}, \frac{\cot \frac{\pi \bar{r}}{2}}{a} \partial_{\theta}, \frac{\cot \frac{\pi \bar{r}}{2}}{a} \csc \theta \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphComNor3

CovDer_SphComNor3

Seguimos utilizando la misma función mencionada aquí.

Para la base \{ \partial_r, \partial_{\theta}, \partial_{\varphi}\}, los símbolos de Christoffel y las derivadas covariantes quedan:

   ChrSym_Sph

CovDer_Sph

Para la base \{ \partial_r, \frac{1}{r} \partial_{\theta}, \frac{\csc \theta}{r} \partial_ {\varphi}\}, los coeficientes de rotación de Ricci y las derivadas covariantes quedan:

RotRic_SphNor

CovDer_SphNor

Cuando trabajamos en \mathbb{K}^n, con \mathbb{K}=\mathbb{R} o \mathbb{K} = \mathbb{C}, podemos hacerlo en distintos sistemas de coordenadas. Por ejemplo, en \mathbb{R}^2 puedo trabajar en coordenadas cartesianas (x,y) o en coordenadas polares (r,\theta); 0 en \mathbb{R}^3 lo puedo hacer en cartesianas (x,y,z), en cilíndricas (r,\theta,z) o en esféricas (r,\theta,\varphi).

En el cálculo vectorial, en la geometría diferencial o en las ecuaciones en derivadas parciales, lo que hacemos es trabajar con el concepto de diferenciación y lo hacemos en el espacio tangente, que como tiene estructura de espacio vectorial, dispone del concepto de base:

(x,y) \longrightarrow \{ \partial_x, \partial_y \},

(r,\theta) \longrightarrow \{ \partial_r, \partial_\theta \},

(x,y,z) \longrightarrow \{ \partial_x, \partial_y, \partial_z \},

(r,\theta,z) \longrightarrow \{ \partial_r, \partial_\theta, \partial_z \},

(r,\theta,\varphi) \longrightarrow \{ \partial_r, \partial_\theta, \partial_\varphi \},

y es aquí donde tienen sentido las bases holonómicas, todas las anteriores, los cambios de base que comentamos en este post. Las compactificaciones de aquí, por contra, solo tienen sentido al especificar el sistema de coordenadas.

Para nuestras ecuaciones en derivadas parciales, el primer paso será fijar que coordenadas utilizamos en la variedad (compactificaciones) y, hecho esto, determinar que base (holonómica, ortonormal, etc.) queremos utilizar en su fibrado tangente. Por ejemplo, podríamos tener:

(r, \theta, \varphi) \longrightarrow (\partial_r, \frac{1}{r} \partial_\theta, \frac{1}{r \sin \theta} \partial_\varphi),

porque nos resulta comodo tener una bases ortonormal en el espacio tangente.

Aunque siempre podemos hacer cambios de coordenadas, vamos a ver como quedan los esquemas de diferencias finitas en sistemas no rectangulares: coordenadas cilíndricas, (\rho,\phi, z), y coordenadas esféricas, (r,\theta,\phi). Nos centraremos en la ecuación de Poisson aunque la técnica se puede extender de manera inmediata a cualquier tipo de PDE.

En coordenadas cilíndricas podemos escribir:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial \rho^2}u + \frac{1}{\rho}\frac{\partial}{\partial \rho}u + \frac{1}{\rho^2}\frac{\partial^2}{\partial \phi^2}u + \frac{\partial^2}{\partial z^2} u = f,

que podemos discretizar como:

\frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{(\Delta \rho)^2} +

+ \frac{1}{\rho_{i,j,k}}\frac{u_{i+1,j,k}-u_{i-1,j,k}}{2\Delta \rho} +

+ \frac{1}{\rho_{i,j,k}^2} \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(\Delta \phi)^2} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(\Delta z)^2} = f_{i,j,k}

En coordenadas esféricas tenemos:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial r^2}u + \frac{2}{r} \frac{\partial}{\partial r}u + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}u + \frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta}u + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \phi^2}u = f

que podemos discretizar como:

\frac{u_{i-1,j,k-2u_{i,j,k}+u_{i+1,j,k}}}{(\Delta r)^2} +

+ \frac{2}{r_{i,j,k}} \frac{u_{i+1,j,k}+u_{i-1,j,k}}{2\Delta r} +

+ \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(r_{i,j,k} \Delta \theta)^2} +

+ \frac{1}{r_{i,j,k}^2 \sin \phi_{i,j,k}} \frac{u_{i,j+1,k}-u_{i,j-1,k}}{2 \Delta \phi} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(r_{i,j,k} \sin \phi_{i,j,k} \Delta \phi)^2} = f_{i,j,k}

En n dimensiones, el operador Laplaciano queda como:

\Delta u= \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}u

en coordenadas cartesianas, y como:

\Delta u = \frac{\partial}{\partial r^2}u + \frac{n-1}{r}\frac{\partial}{\partial r}u + \frac{1}{r^2}\Delta_{S^{n-1}}u

en esféricas, donde \Delta_{S^{n-1}} es el operador de Laplace-Beltrami, una generalización del Laplaciano para funciones definidas sobre variedades,  en la (n-1)-esfera (S^{n-1}), el operador Laplaciano esférico.

Un punto es un tensor sin índices, un vector es un tensor con 1 índice, una matriz es un tensor con 2 índices, etc. Cuando discreticemos una PDE en n dimensiones, llegaremos a un tensor con n índices y 2n tensores con n-1 índices para las condiciones en las fronteras.

junio 2017
L M X J V S D
« Feb    
 1234
567891011
12131415161718
19202122232425
2627282930