You are currently browsing the tag archive for the ‘esferoidales prolatas compactificadas’ tag.

Recordemos lo ya expuesto en este post: que en las coordenadas esferoidales prolatas (\mu, \nu, \varphi), las dos primeras (\mu, \nu) provienen de las coordenadas elípticas, donde \mu \in ]0,+\infty[ y \nu \in ]0,2\pi[, mientras que la última \varphi \in ]0,2\pi[ proviene de rotarlas alrededor del eje que une los focos.

Compactificamos la primera coordenada mediante \boxed{\mu = b \tan \frac{\pi \bar{\mu}}{2}}.

El Laplaciano y las fuentes, en estas coordenadas y con esta compactificación, utilizando una nueva función en Mathematica que nos lo calcula todo, quedan:

lap_ellComNor2

\boxed{\Delta \Theta_{X} = 6 \pi \mathcal{D}^j S^*_j}

s1_ellComNor2

\boxed{\Delta X^{i} = 8 \pi f^{ij} S^*_j - \frac{1}{3} \mathcal{D}^i \Theta_X}

s21_ellComNor2

\underline{\hat{A}^{ij} = \mathcal{D}^i X^j + \mathcal{D}^j X^i - \frac{2}{3} \mathcal{D}_k X^k f^{ij}}

A1x_ellComNor2

A2x_ellComNor2

A3x_ellComNor2

\boxed{\Delta \psi = -2 \pi E^* \psi^{-1} - \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-7} }

\boxed{\Delta (\alpha \psi) = [ 2 \pi (E^* + 2 S^*) \psi^{-7} + \frac{1}{8}(f_{il} f_{jm} \hat{A}^{lm} \hat{A}^{ij}) \psi^{-8} ] (\alpha \psi) }

\boxed{\Delta \Theta_{\beta} = \frac{3}{4} \mathcal{D}_i \mathcal{D}_j (2 \alpha \psi^{-6} \hat{A}^{ij} )}

\boxed{\Delta \beta^i = \mathcal{D}_j ( 2 \alpha \psi^{-6} \hat{A}^{ij} ) - \frac{1}{3} \mathcal{D}^i \Theta_{\beta} }

Anuncios
septiembre 2017
L M X J V S D
« Ago    
 123
45678910
11121314151617
18192021222324
252627282930