You are currently browsing the tag archive for the ‘forma canónica’ tag.

Una PDE cuasilineal de segundo orden en dos variables independientes x e y con función incógnita u(x,y) tiene la forma general:

a(x,y,u,u_x,u_y) u_{xx} + 2b(x,y,u,u_x,u_y) u_{xy}

+ c(x,y,u,u_x,u_y)u_{yy} + d(x,y,u,u_x,u_y) = 0,

donde a,b,c,d son funciones contínuas en un subconjunto abierto \mathcal{V} de \mathcal{U} \times \mathbb{R}^3 de las variables (x,y,u,u_x,u_y) donde \mathcal{U} es un abierto de \mathbb{R}^2.

Definimos el discriminante como

D(v^0) := a(v^0)c(v^0) - b^2(v^0),

con v^0 = (x^0,y^0,u^0,u_x^0,u_y^0) \in \mathcal{V}. Diremos que la ecuación anterior es:

  1. Elíptica en el punto v^0 si D(v^0) > 0,
  2. Parabólica en el punto v^0 si D(v^0) = 0,
  3. Hiperbólica en el punto v^0 si D(v^0) < 0.

Por tanto, el carácter elíptico, parabólico o hiperbólico depende no solo del punto (x^0,y^0) \in \mathcal{U} sino también del valor de una solución y sus derivadas parciales de primer orden en dicho punto. Además, en el caso de que la parte principal, los coeficientes que multiplican a las derivadas de segundo orden, sea de coeficientes constantes, el carácter se mantiene en todos los puntos donde esté definida la función d.

De esta manera, la ecuación de Laplace u_{tt} + u_{xx} = 0 es elíptica en todos los puntos; la ecuación del calor u_t - u_{xx} =0 es parabólica; y la ecuación de ondas u_{tt} - u_{xx} = 0 es hiperbólica.

En el caso de tener n variables independientes x_1, x_2, \ldots, x_n entonces la ecuación general tiene la forma:

a^{ij}(x_1,\ldots, x_n, u, u_{x_1},\ldots, u_{x_n}) u_{x_i, x_j} + \ldots =0,

donde a^{ij} es la parte principal y el resto son terminos de menor orden. En este caso, el carácter de la ecuación depende de la signatura de los valores propios de la matriz de coeficientes:

  1. Elíptica si los valores propios son todos positivos o todos negativos,
  2. Parabólica cuando todos los valores propios son positivos o negativos excepto uno que es zero,
  3. Hiperbólica si todos los valores propios son positivos excepto uno que es negativo o todos son negativos excepto uno que es positivo.

Finalmente, toda ecuación se puede reducir a una forma canónica, que corresponde a uno de los tres tipos clásicos: Laplace, calor u ondas.

Anuncios
noviembre 2017
L M X J V S D
« Ago    
 12345
6789101112
13141516171819
20212223242526
27282930