You are currently browsing the tag archive for the ‘Geometría Algebraica’ tag.

El viernes 13 de noviembre de 2014 murió Alexander Grothendieck, un genio matemático a la altura de los mas grandes, capaz de reformular el solo toda una área de las matemáticas desde sus mismos cimientos: la geometría algebraica. Sobre el escribí lo siguiente en esta entrada que dediqué al premio Abel del año pasado:

Alexander Grothendieck es el siguiente personaje importante en el área, pues reescribió la geometría algebraica subsumiendo el concepto de variedad algebraica en el de esquema, entendiendo que cualquier anillo conmutativo puede ser un objeto geométrico, dotando de esta manera, de un nuevo lenguaje y una fundamentación, mucho mas potente que la de Weil, para la geometría algebraica.

A pesar de su abstracción, o precisamente por ella, esta última visión es la que ha permanecido, pues permite conectar dos mundos, el de la geometría algebraica y el de la álgebra conmutativa.

Una anécdota que he leído en estos días, que muestran el despertar de su genialidad es la siguiente. Cuando empezó a trabajar en su tesis doctoral bajo la supervisión de Laurent Schwartz y Jean Dieudonné, dos de los mejores matemáticos de la época, le entregaron una lista con 14 problemas para que escogiera uno en el que trabajar los tres o cuatro años siguientes. A los pocos meses los había resuelto todos.

Cosechas y Siembras. Reflexiones y testimonios sobre un pasado de matemático, obra de su puño y letra y, según sus propias palabras:

…una reflexión sobre mí mismo y mi vida. Por eso mismo también es un testimonio…

da una visión de la profundidad e inmensidad de su pensamiento. Algunos extractos de la misma:

.Sus doce “grandes ideas” (su aportación a las matemáticas):

  1. Productos tensoriales topológicos y espacios nucleares.
  2. Dualidad “continua” y “discreta” (categorías derivadas, “seis operaciones”).
  3. Yoga Riemann-Roch-Grothendieck (teoría K, relación con la teoría de intersecciones).
  4. Esquemas.
  5. Topos.
  6. Cohomología étal y l-ádica.
  7. Motivos y grupo de Galois motívico (\otimes-categorías de Grothendieck).
  8. Cristales y cohomología cristalina, yoga “coeficientes de De Rham”, “coeficientes de Hodge”…
  9. “Algebra topológica”:\infty-campos, derivadores; formalismo cohomológico en los topos, como inspiración para una nueva álgebra homotópica.
  10. Topología moderada.
  11. Yoga de geometría algebraica anabeliana, teoría de Galois-Teichmüller.
  12. Punto de vista “esquemático” o “aritmético” en los poliedros regulares y las configuraciones regulares de todo tipo.

.Metaforas:

“Habló sobre dos tipos de matemáticos, el que abriría una nuez con martillo y cincel y el que, pacientemente, la sumerge en agua y espera, con el paso de los meses, a que el líquido penetre y se pueda partir cerrando la mano sin más”.

“Lo ignoto que quiere ser conocido se me presentaba como una porción de tierra, o una dura magra, resistiéndose a la penetración… El océano avanza insensible en silencio, nada parece suceder, nada se mueve, el agua está tan lejos que apenas puedes escucharlo… Y sin embargo finalmente rodea la sustancia resistente”.

.Importancia de las preguntas, nociones y puntos de vista frente a las respuestas propiamente dichas:

Es realmente por el descubrimiento sobre todo de preguntas nuevas, de nociones nuevas, o aún de puntos de vista nuevos, o de nuevos “mundos”, que mi obra matemática ha resultado ser fecunda, más que por las “soluciones” que he aportado a preguntas ya planteadas. Esta pulsión muy fuerte que me lleva hacia el descubrimiento de las buenas preguntas, más que hacia el de las respuestas, y hacia el descubrimiento de buenas nociones y enunciados, mucho más que hacia el de las demostraciones, son otros trazos “yin” fuertemente marcados en mi aproximación a las matemáticas

.Sensibilidad en el manejo del lenguaje e invención de nueva terminología:

Desde un punto de vista cuantitativo, a lo largo de mis años de productividad intensa, mi trabajo se ha concretado sobre todo en unas doce mil páginas de publicaciones, bajo la forma de artículos, monografías o seminarios, y por medio de centenares, si no miles, de nociones nuevas que han entrado en el patrimonio común, con los nombres mismos que les había dado al despejarlas [dégagées]. En la historia de las matemáticas, creo ser aquel que ha introducido en nuestra ciencia el mayor número de nociones nuevas y, a la vez, ser aquel que se ha visto llevado a inventar el mayor número de nombres nuevos, para expresar esas nociones con delicadeza y de la manera más sugestiva posible.

Un resumen en  http://finiterank.com/docs/grothendieck-zalamea.pdf:

Una sitio web dedicado a Grothendieck: http://www.grothendieckcircle.org/

Geometría euclideana, geometría analítica, geometría afín, geometría proyectiva, geometría elíptica, geometría hiperbólica, geometría simplectica, geometría Riemanniana, geometría Lorentziana, geometría conforme, geometría diferencial, geometría lineal, geometría algebraica

¿Qué es, en esencia, una geometría? Felix Klein en su Programa de Erlangen nos lo aclara: es el estudio de los invariantes bajo un grupo de transformaciones, donde grupo se refiere a la estructura algebraica y no al mero conjunto.

Cuando en matemáticas estudiamos una estructura algebraica determinada, un objeto en la Teoria de categorías, supongamos el espacio afín para fijar ideas, a continuación siempre se estudian las aplicaciones entre éstas, los morfismo en la Teoría de categorías, que conservan la estructura en realidad, aplicaciones entre las estructuras que respetan ciertos invariantes característicos de estas estructuras (la idea es que obtendremos el mismo valor para el invariante si trabajamos en la estructura de salida y finalmente transformamos a la estructura  que si primero transformamos para trabajar en el destino), en particular aquellas cuyos conjuntos de salida y de llegada coinciden, los endomorfismos, que en el caso que nos ocupa, por ejemplo, serían las transformaciones afines o afinidades. De esta manera, la geometría afín es el estudio de los invariantes por las traslaciones.

Es mas, no es la geometría la que induce el grupo, sino el grupo el que genera la geometría: dame el grupo de transformaciones admisible y te construiré su geometría.

Pierre Deligne es el ganador del Premio Abel de este año 2013:

“for seminal contributions to algebraic geometry and for their transformative impact on number theory, representation theory, and related fields”

Dos de los blogs que sigo también se hacen eco de la noticia, el de Francisthemulenews y el de Gowers, que de hecho es el encargado oficial de presentar su trabajo al público general. El resumen oficial en español aquí.

El premio Abel es el Nobel de las matemáticas. Era extraño que no existiera un Nobel para esta disciplina fundamental. La Medalla Fields cubre esa ausencia, aunque busca premiar a jovenes talentos, no a matemáticos consagrados. De ahí el premio Abel, creado en el bicentenario del nacimiento del matemático noruego Niels Henrik Abel el año 2002 y otorgado por la Academia Noruega de las Ciencias y las Letras de Noruega, con una dotación económica de 750000 euros similar a la del Nobel.

La geometría algebraica trata de los conjuntos de soluciones de sistemas de ecuaciones polinómicas en varias variable. Al igual que el conjunto de soluciones de los sistemas de ecuaciones lineales en una variable determinan una variedad lineal (puntos, rectas, planos, etc.), las soluciones de los sistemas de ecuaciones polinómicas no lineales determinan variedades algebraicas.

Andre Weil hizo grandes aportaciones a la geometría algebraica, desarrollando todo un lenguaje y una fundamentación para la misma. En un momento propuso cuatro afirmaciones que no pudo demostrar, conocidas a partir de entonces como las Conjeturas de Weil, siendo la última la mas dificil y la mas profunda. Son las siguientes:

Sea Z(x) la función zeta asociada a un sistema de ecuaciones polinómicas de grado n y sea q un primo. Entonces:

  1. Z(x) puede escribirse de la forma \frac{P(x)}{Q(x)} para dos polinomios P y Q con coeficientes enteros.
  2. Concretamente, existe una fórmula de la forma Z(x)=\frac{P_1(x) P_3(x) \ldots P_{2n-1}(x)}{P_0(x) P_2(x) \ldots P_{2n}(x)} donde cada P_i tiene coeficientes enteros y los reciprocos de las raices de P_i son enteros algebraicos y las raices tienen módulo q^{\frac{-i}{2}}.
  3. La función z \mapsto 1/q^n z intercambia las raices de P_i con las de P_{2n-1}.
  4. Bajo condiciones apropiadas, el grado de P_i es igual al i-ésimo Número de Betti del conjunto determinado por el sistema de ecuaciones polinómicas con coeficientes sobre \mathbb{C}.

Alexander Grothendieck es el siguiente personaje importante en el area, pues reescribió la geometría algebraica subsumiendo el concepto de variedad algebraica en el de esquema, entendiendo que cualquier anillo conmutativo puede ser un objeto geométrico, dotando de esta manera, de un nuevo lenguaje y una fundamentación, mucho mas potente que la de Weil, para la geometría algebraica.

A pesar de su abstracción, o precisamente por ella, esta última visión es la que ha permanecido, pues permite conectar dos mundos, el de la geometría algebraica y el de la álgebra conmutativa. Fué gracias a ella que Grothendieck pudo demostrar la ecuación funcional y tenía ideas, demostrar las conjeturas estandar, para abordar la última conjetura.

Es aquí cuando entra en escena Pierre Deligne, discípulo aventajado de Grothendieck. que la demostró pero sin seguir el guión propuesto por Grothendieck, es decir, sin demostrar las conjeturas estandar (de hecho hay gente que piensa que fue capaz de demostrarla porque era el único que realmente comprendía toda la reformulación de su maestro).

Yo no entiendo mucho, y Gowers dice que tampoco, aunque muchísimo mas que yo, por supuesto. pero la demostración dicen que es asombrosa, pues utiliza muchos resultados muy profundos y complidos del area, en palabras del propio Gowers:

  • A theorem of Kazhdan and Margulis about monodromy groups of Lefschetz pencils.
  • A method of Rankin for estimating Ramanujan’s tau function.
  • A cohomology theory of Grothendieck for certain L-functions.
  • The classical invariant theory of the symplectic group.
  • A Leray spectral sequence argument.
  • The “tensor-power trick”

De hecho, esta demostración ya le valió en su momento la medalla Fields. En fin, casi nada… Nuestra felicitación a Pierre Deligne.

agosto 2017
L M X J V S D
« Jul    
 123456
78910111213
14151617181920
21222324252627
28293031