You are currently browsing the tag archive for the ‘Poisson’ tag.

Una nueva imagen curiosa del error en la resolución numérica de una Poisson 2d utilizando multigrid…

caraError2d

Anuncios

Aunque siempre podemos hacer cambios de coordenadas, vamos a ver como quedan los esquemas de diferencias finitas en sistemas no rectangulares: coordenadas cilíndricas, (\rho,\phi, z), y coordenadas esféricas, (r,\theta,\phi). Nos centraremos en la ecuación de Poisson aunque la técnica se puede extender de manera inmediata a cualquier tipo de PDE.

En coordenadas cilíndricas podemos escribir:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial \rho^2}u + \frac{1}{\rho}\frac{\partial}{\partial \rho}u + \frac{1}{\rho^2}\frac{\partial^2}{\partial \phi^2}u + \frac{\partial^2}{\partial z^2} u = f,

que podemos discretizar como:

\frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{(\Delta \rho)^2} +

+ \frac{1}{\rho_{i,j,k}}\frac{u_{i+1,j,k}-u_{i-1,j,k}}{2\Delta \rho} +

+ \frac{1}{\rho_{i,j,k}^2} \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(\Delta \phi)^2} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(\Delta z)^2} = f_{i,j,k}

En coordenadas esféricas tenemos:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial r^2}u + \frac{2}{r} \frac{\partial}{\partial r}u + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}u + \frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta}u + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \phi^2}u = f

que podemos discretizar como:

\frac{u_{i-1,j,k-2u_{i,j,k}+u_{i+1,j,k}}}{(\Delta r)^2} +

+ \frac{2}{r_{i,j,k}} \frac{u_{i+1,j,k}+u_{i-1,j,k}}{2\Delta r} +

+ \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(r_{i,j,k} \Delta \theta)^2} +

+ \frac{1}{r_{i,j,k}^2 \sin \phi_{i,j,k}} \frac{u_{i,j+1,k}-u_{i,j-1,k}}{2 \Delta \phi} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(r_{i,j,k} \sin \phi_{i,j,k} \Delta \phi)^2} = f_{i,j,k}

octubre 2019
L M X J V S D
« Oct    
 123456
78910111213
14151617181920
21222324252627
28293031  
Anuncios