You are currently browsing the tag archive for the ‘Poisson’ tag.

Una nueva imagen curiosa del error en la resolución numérica de una Poisson 2d utilizando multigrid…

caraError2d

Aunque siempre podemos hacer cambios de coordenadas, vamos a ver como quedan los esquemas de diferencias finitas en sistemas no rectangulares: coordenadas cilíndricas, (\rho,\phi, z), y coordenadas esféricas, (r,\theta,\phi). Nos centraremos en la ecuación de Poisson aunque la técnica se puede extender de manera inmediata a cualquier tipo de PDE.

En coordenadas cilíndricas podemos escribir:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial \rho^2}u + \frac{1}{\rho}\frac{\partial}{\partial \rho}u + \frac{1}{\rho^2}\frac{\partial^2}{\partial \phi^2}u + \frac{\partial^2}{\partial z^2} u = f,

que podemos discretizar como:

\frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{(\Delta \rho)^2} +

+ \frac{1}{\rho_{i,j,k}}\frac{u_{i+1,j,k}-u_{i-1,j,k}}{2\Delta \rho} +

+ \frac{1}{\rho_{i,j,k}^2} \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(\Delta \phi)^2} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(\Delta z)^2} = f_{i,j,k}

En coordenadas esféricas tenemos:

\nabla \cdot \nabla u = \frac{\partial^2}{\partial r^2}u + \frac{2}{r} \frac{\partial}{\partial r}u + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}u + \frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta}u + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2}{\partial \phi^2}u = f

que podemos discretizar como:

\frac{u_{i-1,j,k-2u_{i,j,k}+u_{i+1,j,k}}}{(\Delta r)^2} +

+ \frac{2}{r_{i,j,k}} \frac{u_{i+1,j,k}+u_{i-1,j,k}}{2\Delta r} +

+ \frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(r_{i,j,k} \Delta \theta)^2} +

+ \frac{1}{r_{i,j,k}^2 \sin \phi_{i,j,k}} \frac{u_{i,j+1,k}-u_{i,j-1,k}}{2 \Delta \phi} +

+ \frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(r_{i,j,k} \sin \phi_{i,j,k} \Delta \phi)^2} = f_{i,j,k}

febrero 2020
L M X J V S D
« Oct    
 12
3456789
10111213141516
17181920212223
242526272829